• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 286
  • 237
  • 100
  • 30
  • 11
  • 9
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 800
  • 356
  • 232
  • 177
  • 157
  • 114
  • 109
  • 109
  • 104
  • 94
  • 85
  • 84
  • 82
  • 78
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Copper-based Point-of-care Sensor for Heavy Metal Determination in Public Health

Pei, Xing 19 October 2015 (has links)
No description available.
362

Point-of-care Sensors for Determination of Manganese in Clinical Applications

Kang, Wenjing 13 September 2016 (has links)
No description available.
363

A study of certain trace metals in sea water using anodic stripping voltammetry

Fitzgerald, William Francis, 1926- January 1970 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 1970. / "January 1970." / Includes bibliographical references (p. 173-177). / Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to follow theoretical behavior for thin film electrodes and the technique was found not to be adversely affected by dissolved organic material in sea water. Good precision (ca., 5%) was obtained in both coastal and open ocean waters at the in situ concentrations of Zn, Cu, Pb, and Cd. It was shown that this method is at present most suitable for measurements of Cu, Pb, and Cd in sea water. Evidence is given suggesting that Ni may interfere with the determination of Zn through formation of an intermetallic compound, and further studies are indicated to understand this phenomenon. The anodic stripping apparatus was adapted and used conveniently on shipboard. It was demonstrated that stripping analysis could be combined with a method for the destruction of dissolved organic matter- (photo-oxidation with ultra-violet radiation), and with an acidification procedure to obtain measurements of trace metal speciation in sea water. / (cont.) An argument for the existence of Cu-aspartic acid chelates in sea water has been described theoretically and demonstrated empirically; suggesting that a significant fraction of Cu and other trace metals may be expected to be organically sequestered in sea water. A study of coastal waters employing the total method (anodic stripping-photo-oxidation-acidification) indicated the presence of a significant group of organic ligands that complex Cu (ca., 60%). It was also shown that the waters subject to gross pollution contain about 30% of the total Cu in very stable organic complexes that release Cu only when the dissolved organic matter is destroyed, and not when the pH of this sea water is adjusted to 3. An open ocean trace metal study of a thermal-front zone in the western Sargasso Sea gave data for Cu, Zn, Pb, and Cd that compared favorably with other relevant investigations. Higher free metal concentrations were observed south of the front than to the north, providing further evidence that these fronts may mark a change between southern and northern conditions in the Sargasso Sea. Data obtained from shipboard analyses using the total analytical method indicates the presence of weak organic complexes with Cu and Pb in open ocean waters. / by William F. Fitzgerald. / Ph.D.
364

The Chemistry of Cyclopropylarene Radical Cations

Wang, Yonghui 02 June 1997 (has links)
Cyclopropane derivatives are frequently utilized as "probes" for radical cation intermediates in a number of important chemical and biochemical oxidation. The implicit assumption in such studies is that if a radical cation is produced, it will undergo ring opening. Through a detailed examination of follow-up chemistry of electrochemically and chemically generated cyclopropylarene radical cations, we have shown that the assumption made in the use of these substrates as SET probes is not necessarily valid. While cyclopropylbenzene radical cation undergoes rapid methanol-induced ring opening (e.g., k = 8.9⁷ s⁻¹M⁻¹), the radical cations generated from 9-cyclopropylanthracenes do not undergo cyclopropane ring opening at all. The radical cations generated from cyclopropylnaphthalenes disproportionate or dimerize before undergoing ring opening. Utilizing cyclic, derivative cyclic, and linear sweep voltammetry, it was discovered that decay of radical cations generated from cyclopropylnaphthalenes in CH₃CN/CH₃OH is second order in radical cation and zero order in methanol. Anodic and Ce(IV) oxidation of all these naphthyl substrates in CH₃CN/CH₃OH led to cyclopropane ring-opened products. However, the rate constant for methanol-induced ring opening (Ar-c-C₃H₅⁺. + CH₃OH -> ArCH(·)CH₂CH₂O(H⁺)CH₃) is extremely small (<20 s⁻¹M⁻¹ for 1-cyclopropylnaphthalenes) despite the fact that ring opening is exothermic by nearly 30 kcal/mol. These results are explained on the basis of a product-like transition state for ring opening wherein the positive charge is localized on the cyclopropyl group, and thus unable to benefit from potential stabilization offered by the aromatic ring. Reactions of radical cations generated from 9-cyclopropylanthracenes in CH₃CN/CH₃CN have also been investigated electrochemically. The major products arising from oxidation of these anthryl substrates are attributable to CH₃OH attack at the aromatic ring rather than CH₃OH-induced cyclopropane ring opening. Ce(IV) oxidation of 9-cyclopropyl-10-methylanthracene and 9,10-dimethylanthracene further showed that radical cations generated from these anthryl substrates undergo neither cyclopropane ring opening nor deprotonation but nucleophilic addition. Side-chain oxidation products from Ce(IV) oxidation of methylated anthracenes arose from further reaction of nuclear oxidation products under acidic and higher temperature conditions. An analogous (more product-like) transition state picture can be applied for cyclopropane ring opening and deprotonation of these anthryl radical cations. Because of much higher intrinsic barrier to either nucleophile-induced cyclopropane ring opening or deprotonation of these anthryl radical cations, nucleophilic addition predominates. Stereoelectronic effects may be another additional factor contributing to this intrinsic barrier because the cyclopropyl group in these anthryl systems adopts a perpendicular conformation which may not meet the stereoelectronic requirements for cyclopropyl ring opening at either the radical cation or dication stage. / Ph. D.
365

Novel Electrochemical Methods for Human Neurochemistry

Eltahir, Amnah 14 October 2020 (has links)
Computational psychiatry describes psychological phenomena as abnormalities in biological computations. Current available technologies span multiple organizational and temporal domains, but there remains a knowledge gap with respect to neuromodulator dynamics in humans. Recent efforts by members of the Montague Laboratory and collaborators adapted fast scan cyclic voltammetry (FSCV) from rodent experiments for use in human patients already receiving brain surgery. The process of modifying established FSCV methods for clinical application has led improved model building strategies, and a new "random burst" sensing protocol. The advent of random burst sensing raises questions about the capabilities of in-vivo electrochemistry techniques, while opening introducing possibilities for novel approaches. Through a series of in-vitro experiments, this study aims to explore and validate novel electrochemical sensing approaches. Initial expository experiments tested assumptions about waveform design to detect dopamine concentrations by reducing amplitude and duration of forcing functions, as well as distinguishing norepinephrine concentrations. Next, large data sets collected on mixtures of dopamine, serotonin and pH validated a newly proposed "low amplitude random burst sensing" protocol, for both within-probe and out-of-probe modeling. Data collected on the same set of solutions also attempted to establish an order-millisecond random burst sensing approach. Preliminary endeavors into using convolutional neural networks also provided an example of an alternative modeling strategy. The results of this work challenge existing assumptions of neurochemistry, while demonstrating the capabilities of new neurochemical sensing approaches. This study will also act as a springboard for emerging technological developments in human neurochemistry. / Doctor of Philosophy / Neuroscience characterizes nervous system functions from the cellular to the systems level. A gap in available technologies has prevented neuroscientist from studying how changes in the molecular dynamics in the brain relate to psychiatric conditions. Recent efforts by the Montague Laboratory have adapted neurochemistry techniques for use in human patients. Consequently, a new "random burst sensing" approach was developed that challenged existing assumptions about electrochemistry. In this study, in-vivo experiments were conducted to push the limits of electrochemical sensing by reducing the voltage amplitude range and increasing sensing temporal resolution of electrochemical sensing beyond previously established limits. The results of this study offer novel neurochemistry approaches and act as a jumping off point for future technological developments.
366

Evaluation of TiO2 as a Pt-Catalyst Support in a Direct Ethanol Fuel Cell

Gordon, Ashley Rebecca 02 April 2012 (has links)
Direct ethanol fuel cells are of interest due to the high energy density, ease of distribution and handling, and low toxicity of ethanol. Difficulties lie in finding a catalyst that can completely oxidize ethanol and resist poisoning by intermediate reaction species. Degradation of the catalyst layer over time is also an issue that needs to be addressed. In this work, niobium doped-titanium dioxide (Nb-TiO2) is investigated as a platinum (Pt) support due to its increased resistance to corrosion compared to the common catalyst support, carbon. It has also been seen in the literature that TiO2 is able to adsorb OH and assist in freeing Pt sites by further oxidizing COad to CO2 and thereby increasing the catalytic activity of catalysts toward ethanol oxidation. The TiO2 support is mixed with carbon, forming Nb-TiO2-C, in order to increase the conductivity throughout the support. The electrochemical activity and direct ethanol fuel cell (DEFC) performance of this novel catalyst is investigated and compared to that of two common catalysts, carbon supported Pt (Pt/C) and carbon supported platinum-tin (PtSn/C). While the conductivity of the Pt/Nb-TiO2-C electrodes was low compared to that of the carbon supported electrodes, the overall catalytic activity and performance of the TiO2 supported catalyst was comparable to that of the Pt/C catalyst based on the electrochemically active surface area. / Master of Science
367

Stanovení butylhydroxyanisolu na elektrodách modifikovaných uhlíkovými nanotrubičkami / Determination of butylhydroxyanisole using electrodes modified by carbon nanotubes

Krejčová, Markéta January 2015 (has links)
This work was focused on study of a behaviour of the food additivum butylated hydroxyanisole on modified carbon electrodes by the voltammetric techniques - cyclic and differential pulse voltammetry. Glassy carbon and carbon paste electrode were used. Multiwalled carbon nanotubes (MWCNT) in combination with three different binders (acetonitrile, nafione or chitosane) were employed for the electrode modification. Carbon paste electrode was unable to modificate with film containing carbon nanotubes and acetonitrile, its active surface was treated only with nafione and chitosane film. All three mentioned modifications were applied in case of glassy carbon electrode. Butylated hydroxyanisole provided a significantly higher signal using electrodes modified with carbon nanotubes with all three binders in contrast to electrodes without any surface modification. The glassy carbon electrode with carbon nanotube / acetonitrile film on its surface appeared to be the most effective for analytical purposes. Voltammetric determination of butylated hydroxyanisole using this electrode provided a better defined and higher analytical signal and lower relative standard deviations in comparison with other ways of modification. The limit of detection of butylated hydroxyanisole obtained by cyclic voltammetry on glassy...
368

Elektrochemické stanovení Fomesafenu / Electrochemical Determination of Fomesafen

Maška, Jan January 2013 (has links)
The submitted work deals with the application of voltammetric determination of Fomesafen using non-traditional mercury meniscus modified silver solid amalgam electrode on model samples of Fomesafen in real aqueous matrices of drinking and river water. This method of measurement has been developed and optimized in my bachelor thesis, which the diploma thesis is related to. Fomesafen belongs to a group of herbicides used on a mass scale in the late 20th century in the USA and in many countries around the world still used even today. Among its side effects according to the EPA include, among others, potential carcinogenicity to humans and confirmed carcinogenicity to some mammals (such as rats) which led to a legislative regulation on its use in many countries around the world including the USA, the European Union and many others. Silver solid amalgam electrode has been developed with the intention to limit the use of mercury in accordance with new legislation of the European Union and the concept of green analytical chemistry. Despite the low levels of mercury mainly bound in the form of virtually harmless silver amalgam electrode retains very similar electrochemical properties with proven mercury electrodes. As part of the thesis, direct determination of a number of partial extraction of Fomesafen...
369

Studium elektrochemického chování kyseliny tauroursodeoxycholové na elektrodách na bázi rtuti / Study of electrochemical behaviour of tauroursodeoxycholic acid at mercury-based electrodes

Pišnová, Kateřina January 2016 (has links)
This thesis deals with electrochemical behaviour of tauroursodeoxycholic acid (TUDCA) at silver solid amalgam electrode modified by mercury meniscus (m-AgSAE), polished silver solid amalgam electrode (p-AgSAE) and hanging mercury dropping electrode (HMDE). This thesis is a part of a bigger scientific research that deals with synthesis and characterization of supramolecular systems based on natural steroid compounds and its conjugates. TUDCA offers one reduction peak at m-AgSAE in the environment of Britton - Robinson buffer in range of pH 6.0 - 13.0. The potential of this peak is around −1200 mV. Using cyclic voltammetry was determined that the process on the electrode surface is quasireversible, the reduction is controlled by diffusion and the anodic process is controlled by adsorption. Concentration dependence measured at HMDE by direct current voltammetry in 0.04 mol∙l-1 borat buffer (pH 9.1) is linear in two concentration intervals - 1∙10-3 - 2∙10-4 mol∙l-1 and 1∙10-4 - 8∙10-6 mol∙l-1 of TUDCA. There was no linear dependence between the increase of concentration of TUDCA and the height of the peak obtained on amalgam electrodes by methods DC, DP, cyclic and "square-wave" voltammetry. On HMDE was in several short concentration intervals measured by a CV method a linear dependence of cathodic and...
370

Electrochemical Immunosensor based on Cyclodextrin Supramolecular interactions for the detection of human chorionic gonadotropin

Wilson, Lindsay January 2012 (has links)
>Magister Scientiae - MSc / Glucose oxidase (GOx) and horseradish peroxidase (HRP) are important enzymes for the development of amperometric enzyme linked immunosensors. The selectivity of each enzyme towards its analyte deepens its importance in determining the sensitivity of the resultant immunosensor. In designing immunosensors that have customized transducer surfaces, the incorporation with FAD and iron based enzymes ensures that electron kinetics remains optimal for electrochemical measurement. Various different immobilization strategies are used to produce response signals directly proportional to the concentration of analyte with minimal interferences. The combination of self-assembled monolayers and supramolecular chemistry affords stability and simplicity in immunosensor design. In this work, two electrochemical strategies for the detection of human chorionic gonadotropin(hCG) is presented. This involves the modification of a gold surface with a thiolated β-cyclodextrin epichlorohydrin polymer (βCDPSH) to form a supramolecular inclusion complex with ferrocene (Fc)-functionalised carboxymethyl cellulose polymer (CMC). Cyclic voltammetry indicated that ferrocene is in close proximity to the electrode surface due to the supramolecular complex formed with βCDPSH. Furthermore, strategy (a) for the detection of hCG used α-antihCG labelled (HRP) as reporter conjugate. Strategy (b) maintained the CMC bifunctionalised with Fc and recognition antibody for hCG hormone. However, the system was functionalised with a HRP enzyme and detection is done by using GOx reporter conjugates for in situ production of hydrogen peroxide. The reduction of H2O2 was used for the amperometric detection of hCG by applying a potential of 200 mV. The sensitivity and limit of detection of both strategies were calculated from calibration plots. For strategy (a) the LOD was found to be 3.7283 ng/mL corresponding to 33.56 mIU/mL and a sensitivity of 0.0914 nA ng-1 mL-1. The corresponding values for strategy (b) are 700 pg/mL (6.3 mIU/mL) and 0.94 nA ng-1 mL-1.

Page generated in 0.0302 seconds