Spelling suggestions: "subject:"value at risk"" "subject:"alue at risk""
31 |
Measuring Risk of Private Equity PortfoliosMontandon, Pascal. January 2008 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2008.
|
32 |
Liquidität im Risikomanagement /Buhl, Christian. January 2004 (has links)
St. Gallen, Universiẗat, Diss., 2004.
|
33 |
Credit risk evaluation modeling - analysis - management /Wehrspohn, Uwe. Unknown Date (has links) (PDF)
University, Diss., 2002--Heidelberg.
|
34 |
Gestão de risco setorial no mercado de ações brasileiroPessoa, Fernanda Salles de Oliveira 21 February 2013 (has links)
PESSOA, Fernanda Salles de Oliveira. Gestão de risco setorial no mercado de ações brasileiro. 2013. 54f. Dissertação (Mestrado Profissional) - Programa de Pós Graduação em Economia, CAEN, Universidade Federal do Ceará, Fortaleza-CE, 2013. / Submitted by Mônica Correia Aquino (monicacorreiaaquino@gmail.com) on 2014-10-16T19:40:05Z
No. of bitstreams: 1
2013_dissert_fsopessoa.pdf: 2508692 bytes, checksum: 99478cdb7057ed103681a29a780db21e (MD5) / Approved for entry into archive by Mônica Correia Aquino(monicacorreiaaquino@gmail.com) on 2014-10-16T19:40:18Z (GMT) No. of bitstreams: 1
2013_dissert_fsopessoa.pdf: 2508692 bytes, checksum: 99478cdb7057ed103681a29a780db21e (MD5) / Made available in DSpace on 2014-10-16T19:40:18Z (GMT). No. of bitstreams: 1
2013_dissert_fsopessoa.pdf: 2508692 bytes, checksum: 99478cdb7057ed103681a29a780db21e (MD5)
Previous issue date: 2013-02-21 / This work analyzes during the period between 2008/01 and 2011/12 the market risk of six sectorial indexes from the São Paulo´s Stock Market (BM&FBovespa): the real state index (IMOB), the eletric power index (IEE), the consumption index (ICON), the industrial sector index (INDX), the financial index (IFNC) and the telecommunications sector index (ITEL). Throughout the Value-at-Risk metric (VaR), four models are estimated. Two of those models are called unconditional, due to its variance: the Unconditional Gaussian VaR, that admits that the returns follow a normal distribution, and the Unconditional Best Fitting VaR, built from the distribution of probabilities that better fits to the returns series. The other two models are called conditionals, assuming that the volatility changes along the time. The GARCH autoregressive models are used to estimate the conditional variance of each index, allowing an estimation of the Unconditional Gaussian VaR and the Unconditional Best Fitting VaR. Afterwards, the VaR models backtestings are realized, revealing the conditional models superiority. Finally, throughout the Balzer´s graphics, the indexes performances were observed over the confrontations between them. It was found that, for the analyzed period, the IEE wins every confrontation against the all other indexes, showing the best relation risk x return. The real state index sector, represented by the IMOB, lost all the confronts. / Este trabalho analisa durante o período de 01/2008 a 12/2011 o risco de mercado de seis índices setoriais da Bolsa de Valores de São Paulo (BM&FBovespa): o índice imobiliário (IMOB), o índice de energia elétrica (IEE), o índice de consumo (ICON), o índice do setor industrial (INDX), o índice financeiro (IFNC) e o índice setorial de telecomunicações (ITEL). Através da métrica Value-at-Risk (VaR) estimam-se quatro modelos. Dois desses modelos são ditos incondicionais no que se refere à variância: o VaR Gaussiano Incondicional, admitindo que os retornos seguem uma distribuição normal, e o VaR Best Fitting Incondicional, construído a partir da distribuição de probabilidades que melhor se ajusta às séries de retornos. Os outros dois modelos são chamados de condicionais, assumindo que a volatilidade varia ao longo do tempo. Os modelos autoregressivos do tipo GARCH são utilizados para estimar a variância condicional de cada índice, possibilitando a estimação do VaR Gaussiano Incondicional e do VaR Best Fitting Incondicional. Em seguida, realizam-se backtestings dos modelos de VaR, revelando a superioridade dos modelos condicionais. Por fim, através de gráficos de Balzer, observou-se a performance dos índices por meio de confrontos entre eles. Foi constatado que, para o período analisado, o IEE vence todos os embates feitos com os demais índices, apresentando a melhor relação risco x retorno. O setor imobiliário, representado pelo IMOB, perde todos os confrontos.
|
35 |
Avaliacao da estimativa do risco de mercado pela metodologia Value at Risk (VaR) com simulacao de Monte CarloLuiz de Oliveira Bezerra, Fabio January 2001 (has links)
Made available in DSpace on 2014-06-12T15:05:09Z (GMT). No. of bitstreams: 2
arquivo1138_1.pdf: 639102 bytes, checksum: 35cb2db02d50168acae0189ebb693f3c (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2001 / Este trabalho tem o intuito de avaliar a capacidade da abordagem Value at Risk
com simulação de Monte Carlo (SMC), na previsão do risco de mercado da ação da
Petrobrás (PETR4) e das opções de compra da PETR4 (PETRJ39, PETRH6, PETRH5).
Compara-se a performance da SMC com os métodos denominados paramétricos: para a
carteira de ações, considera-se o modelo do desvio padrão, e, para a carteira de opções,
utiliza-se as aproximações Delta e Delta-Gama.
Sabendo que a exatidão da estimativa do VaR pela simulação de Monte Carlo
reside no modelo de precificação do valor da carteira, analisam-se os seguintes modelos: o
de Black & Scholes (SMC Univariada), o de Hull & White, que inclui volatilidade
estocástica (SMC Bivariada), e, por último, a inclusão da taxa de juros também estocástica
através do modelo de Rendleman e Bartter (SMC Trivariada).
As evidências empíricas sugerem que a estimativa do VaR pela simulação de
Monte Carlo supera a dos métodos paramétricos. Especificamente quando se refere às
opções, a performance da SMC é ainda melhor, devido a sua capacidade de capturar os
efeitos da não-linearidade desses ativos financeiros
|
36 |
Value at Risk med Riskmetrics-metoden : Fungerar VaR på den svenska aktiemarkanden?Grek, Åsa, Winkler, Mikael January 2013 (has links)
Value at Risk (VaR) är en finansiell metod för att skatta risker och som används i stor utsträckning av banker och företag. VaR beräknar att en eventuell förlust inte skall överstiga ett visst belopp med 95/99 procents konfidens. Denna uppsats syfte är att undersöka om VaR kan appliceras på en svensk aktie när Riskmetrics-modellen (IGARCH) skattar volatiliteten på aktien trots oro på den finansiella marknaden. Undersökningen genomfördes på Volvos B-aktie med data från perioden 2003-01-01 till 201 2-12-31. Vi genererade enstegsprognoser över den potentiella förlusten (VaR) givet en fiktiv investering av 10 000 000 SEK. Det estimerade VaR jämfördes sedan med de verkliga historiska utfallen. Resultaten visade att VaR med Riskmetrics-metoden lyckas täcka den verkliga förlusten i 96.31 procent av fallen. Detta resultat tyder på att Riskmetrics lyckas att skatta volatiliteten även under oroligheter, dels på den finansiella marknaden och dels inom företaget.
|
37 |
Value at Risk : kritische Betrachtung des Konzepts, Möglichkeiten der Übertragung auf den Nichtfinanzbereich /Diggelmann, Patrick B. January 1999 (has links) (PDF)
Diss. Wirtschaftswiss. Zürich (kein Austausch). / Im Buchh.: Zürich : Versus-Verlag. Register. Literaturverz.
|
38 |
Einsatz des Conditional Value-at-Risk in der Entscheidung unter Risiko : Anwendungen in der Portfolioabsicherung /Koller, Jérôme. January 2005 (has links) (PDF)
Diss. Univ. St. Gallen, 2005.
|
39 |
O uso de cópulas para gestão de riscosMacêdo, Guilherme Ribeiro de January 2012 (has links)
O grande número de publicações na área de finanças atualmente utilizando a modelagem de cópulas pode ser explicada pela capacidade de esta técnica estatística conseguir lidar com a evidência de não normalidade das séries de retornos de ativos financeiros. A não normalidade é evidenciada através do “sorriso de volatilidade” presente em séries de opções de ações perto do vencimento; existência de “caudas pesadas” em carteiras de instituições e consequentemente no gerenciamento de risco das Instituições. Particularmente com relação ao Value at Risk (VaR), que é uma técnica estatística que tem por objetivo calcular a perda máxima de uma carteira em dado horizonte de tempo considerando um nível de significância adotado, a existência de caudas pesadas nas séries gera um problema para a determinação da distribuição de probabilidade conjunta, implicando em grande dificuldade na mensuração do grau de exposição aos fatores de risco. Esse fato acaba por dificultar o correto e efetivo gerenciamento de risco de uma carteira, pois em tese, devido à existência de não normalidade, não é possível separar os efeitos de ativos de diferentes características. Em casos de crises e bolhas, o portfólio pode ser mais arriscado que o desejado ou excessivamente conversador. Neste sentido, a utilização de Cópulas torna-se atrativa, pois com esta técnica é possível separar as distribuições marginais de cada ativo da estrutura de dependência das variáveis. O objetivo do trabalho é propor uma modelagem de risco a partir do uso de Cópulas para o cálculo do Value at Risk (VaR), utilizando os métodos de volatilidade GARCH (1,1), EWMA e HAR. A aplicação empírica do modelo foi efetuada a partir de uma amostra de uma série de retornos de uma carteira teórica composta por ativos de renda variável (ações preferenciais) das empresas Petrobras, Vale, Usiminas e Gerdau. A amostra utilizada corresponde aos preços diários entre o período de 03 de março de 2006 até 30 de abril de 2010, representando 1.026 observações diárias. Os resultados apurados para a amostra demonstraram que as cópulas tendem a gerar um Value at Risk (VaR) significativo para a maioria das famílias de Cópulas, quando testado pelo Teste de Kupiec (1995). / The large number of publications in finance using currently copulas can be explained by the ability of this technique to deal with statistical evidence of non-normality of the return series of financial assets. The non-normality is evidenced by the "volatility smile" in the series of stock options near expiration, the existence of "heavy tails" in portfolios of institutions and consequently the risk management of the institutions. Especially regarding the Value at Risk (VaR), which is a statistical technique that aims to calculate the maximum loss a portfolio at a given time horizon considering a significance level, the existence of heavy tails in the series creates a problem for determining the joint probability distribution, resulting in great difficulty in measuring the degree of exposure to risk factors. This fact makes difficult the correct and effective risk management of a portfolio, because in theory, due to the existence of non-normality, it is not possible to separate the effects of assets with different characteristics. In cases of crises and bubbles, the portfolio may be riskier than desired or overly chatty. In this regard, the use of copulas becomes attractive, because with this technique is possible to separate the marginal distributions of each dependence structure of the variables. The objective is to propose a model of risk using copulas for the calculation of Value at Risk (VaR), using the methods of volatility GARCH (1,1), EWMA and HAR. The empirical application of the model was made from a sample of a series of returns of a theoretical portfolio of assets in equities (shares) of Petrobras, Vale, Usiminas and Gerdau. The sample corresponds to the daily prices in the period between March 3rd, 2006 until April 30th, 2010, representing 1026 daily observations. The results obtained showed that copulas tend to generate a Value at Risk (VaR) for the most significant families of copulas, when tested by the Test of Kupiec (1995).
|
40 |
O uso de cópulas para gestão de riscosMacêdo, Guilherme Ribeiro de January 2012 (has links)
O grande número de publicações na área de finanças atualmente utilizando a modelagem de cópulas pode ser explicada pela capacidade de esta técnica estatística conseguir lidar com a evidência de não normalidade das séries de retornos de ativos financeiros. A não normalidade é evidenciada através do “sorriso de volatilidade” presente em séries de opções de ações perto do vencimento; existência de “caudas pesadas” em carteiras de instituições e consequentemente no gerenciamento de risco das Instituições. Particularmente com relação ao Value at Risk (VaR), que é uma técnica estatística que tem por objetivo calcular a perda máxima de uma carteira em dado horizonte de tempo considerando um nível de significância adotado, a existência de caudas pesadas nas séries gera um problema para a determinação da distribuição de probabilidade conjunta, implicando em grande dificuldade na mensuração do grau de exposição aos fatores de risco. Esse fato acaba por dificultar o correto e efetivo gerenciamento de risco de uma carteira, pois em tese, devido à existência de não normalidade, não é possível separar os efeitos de ativos de diferentes características. Em casos de crises e bolhas, o portfólio pode ser mais arriscado que o desejado ou excessivamente conversador. Neste sentido, a utilização de Cópulas torna-se atrativa, pois com esta técnica é possível separar as distribuições marginais de cada ativo da estrutura de dependência das variáveis. O objetivo do trabalho é propor uma modelagem de risco a partir do uso de Cópulas para o cálculo do Value at Risk (VaR), utilizando os métodos de volatilidade GARCH (1,1), EWMA e HAR. A aplicação empírica do modelo foi efetuada a partir de uma amostra de uma série de retornos de uma carteira teórica composta por ativos de renda variável (ações preferenciais) das empresas Petrobras, Vale, Usiminas e Gerdau. A amostra utilizada corresponde aos preços diários entre o período de 03 de março de 2006 até 30 de abril de 2010, representando 1.026 observações diárias. Os resultados apurados para a amostra demonstraram que as cópulas tendem a gerar um Value at Risk (VaR) significativo para a maioria das famílias de Cópulas, quando testado pelo Teste de Kupiec (1995). / The large number of publications in finance using currently copulas can be explained by the ability of this technique to deal with statistical evidence of non-normality of the return series of financial assets. The non-normality is evidenced by the "volatility smile" in the series of stock options near expiration, the existence of "heavy tails" in portfolios of institutions and consequently the risk management of the institutions. Especially regarding the Value at Risk (VaR), which is a statistical technique that aims to calculate the maximum loss a portfolio at a given time horizon considering a significance level, the existence of heavy tails in the series creates a problem for determining the joint probability distribution, resulting in great difficulty in measuring the degree of exposure to risk factors. This fact makes difficult the correct and effective risk management of a portfolio, because in theory, due to the existence of non-normality, it is not possible to separate the effects of assets with different characteristics. In cases of crises and bubbles, the portfolio may be riskier than desired or overly chatty. In this regard, the use of copulas becomes attractive, because with this technique is possible to separate the marginal distributions of each dependence structure of the variables. The objective is to propose a model of risk using copulas for the calculation of Value at Risk (VaR), using the methods of volatility GARCH (1,1), EWMA and HAR. The empirical application of the model was made from a sample of a series of returns of a theoretical portfolio of assets in equities (shares) of Petrobras, Vale, Usiminas and Gerdau. The sample corresponds to the daily prices in the period between March 3rd, 2006 until April 30th, 2010, representing 1026 daily observations. The results obtained showed that copulas tend to generate a Value at Risk (VaR) for the most significant families of copulas, when tested by the Test of Kupiec (1995).
|
Page generated in 0.0893 seconds