Spelling suggestions: "subject:"valve ciming"" "subject:"valve chiming""
1 |
Electromagnetic Variable Valve Timing on a Single Cylinder Engine in HCCI and SIMashkournia, Masoud Unknown Date
No description available.
|
2 |
Development of a New Fully Flexible Hydraulic Variable Valve Actuation SystemPournazeri, Mohammad 22 May 2012 (has links)
The automotive industry has been in a marathon of advancement over the past decades. This is partly due to global environmental concerns about increasing amount of air pollutants such as NOx (oxides of nitrogen), CO (carbon monoxide) and particulate matters (PM) and decreasing fossil fuel resources. Recently due to stringent emission regulations such as US EPA (Environmental Protection Agency) and CARB (California Air Resource Board), improvement in fuel economy and reduction in the exhaust gas emissions have become the two major challenges for engine manufacturers. To fulfill the requirements of these regulations, the IC engines including gasoline and diesel engines have experienced significant modifications during the past decades. Incorporating the fully flexible valvetrains in production IC engines is one of the several ways to improve the performance of these engines. The ultimate goal of this PhD thesis is to conduct feasibility study on development of a reliable fully flexible hydraulic valvetrain for automotive engines.
Camless valvetrains such as electro-hydraulic, electro-mechanical and electro-pneumatic valve actuators have been developed and extensively studied by several engine component manufacturers and researchers. Unlike conventional camshaft driven systems and cam-based variable valve timing (VVT) techniques, these systems offer valve timings and lift control that are fully independent of crankshaft position and engine speed. These systems are key technical enablers for HCCI, 2/4 stroke-switching gasoline and air hybrid technologies, each of which is a high fuel efficiency technology. Although the flexibility of the camless valvetrains is limitless, they are generally more complex and expensive than cam-based systems and require more study on areas of reliability, fail safety, durability, repeatability and robustness. On the contrary, the cam-based variable valve timing systems are more reliable, durable, repeatable and robust but much less flexible and much more complex in design. In this research work, a new hydraulic variable valve actuation system (VVA) is proposed, designed, prototyped and tested. The proposed system consists of a two rotary spool valves each of which actuated either by a combination of engine crankshaft and a phase shifter or by a variable speed servo-motor. The proposed actuation system offers the same level of flexibility as camless valvetrains while its reliability, repeatability and robustness are comparable with cam driven systems. In this system, the engine valve opening and closing events can be advanced or retarded without any constraint as well as the final valve lift. Transition from regenerative braking or air motor mode to conventional mode in air hybrid engines can be easily realized using the proposed valvetrain.
The proposed VVA system, as a stand-alone unit, is modeled, designed, prototyped and successfully tested. The mathematical model of the system is verified by the experimental data and used as a numerical test bench for evaluating the performance of the designed control systems. The system test setup is equipped with valve timing and lift controllers and it is tested to measure repeatability, flexibility and control precision of the valve actuation system. For fast and accurate engine valve lift control, a simplified dynamic model of the system (average model) is derived based on the energy and mass conservation principles. A discrete time sliding mode controller is designed based on the system average model and it is implemented and tested on the experimental setup. To improve the energy efficiency and robustness of the proposed valve actuator, the system design parameters are subjected to an optimization using the genetic algorithm method. Finally, an energy recovery system is proposed, designed and tested to reduce the hydraulic valvetrain power consumption.
The presented study is only a small portion of the growing research in this area, and it is hoped that the results obtained here will lead to the realization of a more reliable, repeatable, and flexible engine valve system.
|
3 |
Simulation and Analyis of a Continuous Variable Cam Phasing Internal Combustion EngineHammarlund, Pär January 2008 (has links)
<p>The development of fuel efficient internal combustion engines (ICE)have resulted in a variety of different solutions. One of those are the variable valve timing and an implemenation of such is the Continuous Variable Cam Phasing (CVCP). This thesis have used a simulation package, psPack, for the simulation of the gas exchange process for an ICE with CVCP. The purpose of the simulations was to investigate what kind of design parameters, e.g. the length of an intake pipe or the duration of combustion, that were significant for the gas exchange process with the alternation of intake pressure, engine speed and valve setting. The parameters that showed a vast impact were those who affected the amount of residual gas and the temperature of the air charge. Furthermore a validation was made between simulation data acquired from psPack and measured data provided in Heywood (1988). The validation showed that for the general behaviour the simulation results from psPack corresponded well to the measured data.</p>
|
4 |
Development of a New Fully Flexible Hydraulic Variable Valve Actuation SystemPournazeri, Mohammad 22 May 2012 (has links)
The automotive industry has been in a marathon of advancement over the past decades. This is partly due to global environmental concerns about increasing amount of air pollutants such as NOx (oxides of nitrogen), CO (carbon monoxide) and particulate matters (PM) and decreasing fossil fuel resources. Recently due to stringent emission regulations such as US EPA (Environmental Protection Agency) and CARB (California Air Resource Board), improvement in fuel economy and reduction in the exhaust gas emissions have become the two major challenges for engine manufacturers. To fulfill the requirements of these regulations, the IC engines including gasoline and diesel engines have experienced significant modifications during the past decades. Incorporating the fully flexible valvetrains in production IC engines is one of the several ways to improve the performance of these engines. The ultimate goal of this PhD thesis is to conduct feasibility study on development of a reliable fully flexible hydraulic valvetrain for automotive engines.
Camless valvetrains such as electro-hydraulic, electro-mechanical and electro-pneumatic valve actuators have been developed and extensively studied by several engine component manufacturers and researchers. Unlike conventional camshaft driven systems and cam-based variable valve timing (VVT) techniques, these systems offer valve timings and lift control that are fully independent of crankshaft position and engine speed. These systems are key technical enablers for HCCI, 2/4 stroke-switching gasoline and air hybrid technologies, each of which is a high fuel efficiency technology. Although the flexibility of the camless valvetrains is limitless, they are generally more complex and expensive than cam-based systems and require more study on areas of reliability, fail safety, durability, repeatability and robustness. On the contrary, the cam-based variable valve timing systems are more reliable, durable, repeatable and robust but much less flexible and much more complex in design. In this research work, a new hydraulic variable valve actuation system (VVA) is proposed, designed, prototyped and tested. The proposed system consists of a two rotary spool valves each of which actuated either by a combination of engine crankshaft and a phase shifter or by a variable speed servo-motor. The proposed actuation system offers the same level of flexibility as camless valvetrains while its reliability, repeatability and robustness are comparable with cam driven systems. In this system, the engine valve opening and closing events can be advanced or retarded without any constraint as well as the final valve lift. Transition from regenerative braking or air motor mode to conventional mode in air hybrid engines can be easily realized using the proposed valvetrain.
The proposed VVA system, as a stand-alone unit, is modeled, designed, prototyped and successfully tested. The mathematical model of the system is verified by the experimental data and used as a numerical test bench for evaluating the performance of the designed control systems. The system test setup is equipped with valve timing and lift controllers and it is tested to measure repeatability, flexibility and control precision of the valve actuation system. For fast and accurate engine valve lift control, a simplified dynamic model of the system (average model) is derived based on the energy and mass conservation principles. A discrete time sliding mode controller is designed based on the system average model and it is implemented and tested on the experimental setup. To improve the energy efficiency and robustness of the proposed valve actuator, the system design parameters are subjected to an optimization using the genetic algorithm method. Finally, an energy recovery system is proposed, designed and tested to reduce the hydraulic valvetrain power consumption.
The presented study is only a small portion of the growing research in this area, and it is hoped that the results obtained here will lead to the realization of a more reliable, repeatable, and flexible engine valve system.
|
5 |
Estimation of Air Mass Flow in Engines with Variable Valve TimingFantenberg, Elina January 2018 (has links)
To control the combustion in an engine, an accurate estimation of the air mass flow is required. Due to strict emission legislation and high demands on fuel consumption from customers, a technology called variable valve timing is investigated. This technology controls the amount of air inducted to the engine cylinder and the amount of gases pushed out of the cylinder, via the inlet and exhaust valves. The air mass flow is usually estimated by large look-up tables but when introducing variable valve timing, the air mass flow also depends on the angles of the inlet and exhaust valves causing these look-up tables to grow with two dimensions. To avoid this, models to estimate the air mass flow have been derived. This has been done with grey-box models, using physical equations together with unknown parameters estimated by solving a linear least-squares optimization problem. To be able to implement the models in the electronic control unit in the future, only sensors implemented in a commercial vehicle are used as much as possible. The work has been done using an inline 6-cylinder diesel engine with measurements from steady-state conditions. All four models derived in this project are based on the estimation methods in use today with fix cam phasing, and are derived from the ideal gas law together with a volumetric efficiency factor. The first three models derived in this work only include sensors provided in commercial engines. The measurements needed as input signals are engine rotational speed, crank angle resolved pressure in the intake manifold, intake and exhaust valve angles and intake manifold temperature. The fourth and last model is divided into three sub-models to model different parts of the four-stroke engine cycle. This model also includes crank angle resolved exhaust manifold pressure and exhaust manifold temperature, where the temperature is the only sensor used in this project that is not provided in a commercial engine. It has been concluded how influential it is to use correctly measured values for the input signals. Since the manifold pressure and the cylinder volume vary during one four-stroke cycle, it is essential that these signal measurements are taken at the right crank angle degree. With wrong crank angle degree, the estimation is worse than if the cylinder volume is constant for all operating points and the pressure signals are taken as a mean value over the whole four-stroke cycle. Further development to reach better estimation results with lower relative error is needed. However, for the work in this thesis, the model with best model fit is estimating the air mass flow well enough to use it as a basis for further control.
|
6 |
Simulation and Analyis of a Continuous Variable Cam Phasing Internal Combustion EngineHammarlund, Pär January 2008 (has links)
The development of fuel efficient internal combustion engines (ICE)have resulted in a variety of different solutions. One of those are the variable valve timing and an implemenation of such is the Continuous Variable Cam Phasing (CVCP). This thesis have used a simulation package, psPack, for the simulation of the gas exchange process for an ICE with CVCP. The purpose of the simulations was to investigate what kind of design parameters, e.g. the length of an intake pipe or the duration of combustion, that were significant for the gas exchange process with the alternation of intake pressure, engine speed and valve setting. The parameters that showed a vast impact were those who affected the amount of residual gas and the temperature of the air charge. Furthermore a validation was made between simulation data acquired from psPack and measured data provided in Heywood (1988). The validation showed that for the general behaviour the simulation results from psPack corresponded well to the measured data.
|
7 |
Návrh vačkového hřídele pro motor s Millerovým cyklem / Camshaft design for Miller cycle engineDúlovcová, Gabriela January 2020 (has links)
The main aim of this thesis is the analysis of influence of inlet valve opening length and compression ratio on performance and thermodynamic parameters of Miller cycle using GT-SUITE software. Next step was an optimization of inlet and exhaust valve timing with goal of increasing motor effective power. For chosen option was designed cam shaft with regard of kinematic and dynamic magnitude courses.
|
8 |
Analytical target cascading framework for engine calibration optimisationKianifar, Mohammed R., Campean, Felician January 2014 (has links)
Yes / This paper presents the development and implementation of an Analytical Target Cascading (ATC) Multi-disciplinary Design Optimisation (MDO) framework for the steady state engine calibration optimisation problem. The case is made that the MDO / ATC offers a convenient framework for the engine calibration optimisation problem based on steady state engine test data collected at specified engine speed / load points, which is naturally structured on 2 hierarchical levels: the “Global” level, associated with performance over a drive cycle, and “Local” level, relating to engine operation at each speed / load point. The case study of a gasoline engine equipped with variable camshaft timing (VCT) was considered to study the application of the ATC framework to a calibration optimisation problem. The paper describes the analysis and mathematical formulation of the VCT calibration optimisation as an ATC framework, and its Matlab implementation with gradient based and evolutionary optimisation algorithms. The results and performance of the ATC are discussed comparatively with the conventional two-stage approach to steady state calibration optimisation. The main conclusion from this research is that ATC offers a powerful and efficient approach for engine calibration optimisation, delivering better solutions at both “Global” and “Local” levels. Further advantages of the ATC framework is that it is flexible and scalable to the complexity of the calibration problem, and enables calibrator preference to be incorporated a priori in the optimisation problem formulation, delivering important time saving for the overall calibration development process. / The research work presented in this paper was funded by UK Technology Strategy Board (TSB) through the CREO (Carbon Reduction through Engine Optimisation) project.
|
9 |
An Alternative Variable Valve Timing System for Heavy Duty VehiclesEriksson, Mikael, Olovsson, Daniel January 2016 (has links)
The ability to control engine valve timing has the potential to alter the engine performance over the entire operating range. The outcome of valve timing technology enables the possibility to increase efficiency, lowering emissions, increase engine torque, etc. One of the simplest ways to obtain a variable valve timing is to use cam phasers. The dynamics of a hydraulic cam phaser has been studied, three concepts with the purpose to control such an element has been developed using simulation driven product development. Focus have been on robustness, simplicity and implementation. A final concept using on/off solenoids to control a torque driven cam phaser has been designed and simulated in GT-SUITE which validated its performance and functionality. A dynamic model was built in Simulink which simulated the behaviour of the cam phaser and provided tools for optimizing the rotor design. By combining the knowledge of mechanical- and control engineering at Scania, the development process of such machine elements was effective. The outcome of this thesis has given a new perspective in understanding these components and their potentials.
|
10 |
Ventilový rozvod přeplňovaného motoru formule Student / Valve Train for Turbocharged Formula Student EngineBuchta, Martin January 2016 (has links)
This diploma thesis deals with valve train design of turbocharged engine used in Formula Student category race car. Based on thermodynamic model, a proper valve timing was chosen to achieve maximum power at high engine speed. A kinematic model was used to compute final cam profiles and CAD model was created.
|
Page generated in 0.054 seconds