• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 39
  • 23
  • 14
  • 9
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 246
  • 246
  • 243
  • 76
  • 44
  • 37
  • 32
  • 30
  • 30
  • 29
  • 28
  • 26
  • 25
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Theoretical and experimental study of capillary condensation and of its possible application in micro-assembly / Etude théorique et expérimentale de la condensation capillaire en vue de son application au micro-assemblage

Chau, Alexandre 11 December 2007 (has links)
Nowadays, the assembly of small (<1mm) components has become an industrial reality. Many domains like MEMS, surgery, telecommunications, car industry, etc. now have large use of micro-parts. At this scale, predominant forces are different than in macroworld. The pieces often undergo adhesion problems. The adhesion forces can be splitted in different components :van der Waals, electrostatics and capillary condensation. This work focuses on capillary condensation as it often can be the major component of the adhesion force. <p><p>The first part of this work details a review of literature of different fields involved in capillary condensation. A simulation tool is then implemented and theoretically validated in the second part of the work. Finally, a test bed is presented; this bed is then used to experimentally validate the simulation results.<p><p>Experiments and simulation results are shown to concord. Therefore, the simulation tool can be used to model the force due to capillary condensation. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
62

Improved Theory of Clathrate Hydrates

Srikanth, Ravipati January 2015 (has links) (PDF)
The current theoretical understanding of thermodynamics of clathrate hydrates is based on the van der Waals and Plattew (vdWP) theory developed using statistical thermodynamics approach. vdWP theory has been widely used to predict the phase equilibrium of clathrate hydrates over the decades. However, earlier studies have shown that this success could be due to the presence of a large number of parameters. In this thesis, a systematic and a rigorous analysis of vdWP theory is per-formed with the help of Monte Carlo molecular simulations for methane hydrate. The analysis revealed that long range guest-water interactions and guest-guest interactions are important, Monte Carlo integration to is superior to the spherical shell approximation for the Langmuir constant calculation and even after inclusion of all the interactions and using Monte Carlo integration for Langmuir constant, the vdWP theory still fails to regress parameters correctly. This failure of vdWP theory is attributed to the rigid water lattice approximation. To address the rigid water lattice approximation, a new method is proposed. In the proposed method, the Langmuir constant is computed in flexible water lattice, by considering the movement of water molecules. The occupancy values predicted using the proposed method are in excellent agreement with the values obtained from Monte Carlo molecular simulations for variety of hydrates, methane, ethane, carbon dioxide and tetrahydrofuran(THF) hydrates . In addition to small guest molecules like methane, ethane etc. which are mod- heled as rigid, the method is extended for large guest molecules like propane and isobutane, using configurationally bias Monte Carlo method. The phase equilib-rium and occupancy along the phase equilibrium predictions from vdWP theory are compared with the exact phase equilibrium computed from Monte Carlo molecular simulations. This comparison is done for a wide variety of hydrate systems, single hydrates , binary hydrates and quaternary hydrate. In all the cases, the vdWP theory with the flexible water lattice showed significant improvement over the rigid lattice model with significantly less absolute relative deviations in pressure. Guest-cavity interactions for hydrates are calculated using abinitio calculations. In general, these guest-cavity interaction from first principle calculations are used to develop classical force field parameters in alternative to Lorentz-Berthelot rule. In the study, comparison of guest-cavity interactions from MP2 and CCSD(T) methods revealed that less expensive MP2 method, which is generally used, is insouciant to capture the dispersion interactions accurately. These guest-cavity interactions using CCSD(T) method extrapolated to complete basis set are used to model the interaction parameters between cyclopropane and water. The potential parameters obtained from ab-initio calculations are used in the calculation of Langmuir constant using vdWP theory. Langmuir constant calculated using vdWP theory with flexible water lattice gave close agreement with the values obtained from experimental occupancy data. In addition, simulation methodology to calculate ternary hydrate phase equilibrium is extended for binary hydrates. Simulations have been successful in the prediction of sIsII and sII-sI structural transitions as observed in experiments. Predicted methane-ethane binary hydrate is also compared with the available experimental phase equilibrium data. The phase equilibrium obtained from simulations showed very good qualitative agreement with the experimental data.
63

Dinâmica não linear, caos, e controle na microscopia de força atômica

Nozaki, Ricardo [UNESP] 25 November 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-11-25Bitstream added on 2014-06-13T19:37:14Z : No. of bitstreams: 1 nozaki_r_me_bauru.pdf: 1471745 bytes, checksum: 002a3fa9cff00fe97414905826f120e6 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O sistema de microscopia de força atômica se tornou um instrumento popular e útil para medir as forças intermoleculares com resolução atômica que pode ser aplicado em eletrônica, análises biológicas, engenharia de materiais, semicondutores, etc. Este trabalho estuda o comportamento da dinâmica não-linear da ponta da sonda causada pelo tipo da amostra e os modos de funcionamento de um microscópio de força atômica. Utilizando-se de simulações numéricas, busca-se uma solução aproximada, através do método de perturbação de múltiplas escalas e teoria de controle linear ótimo consegue-se um bom entendimento do trabalho feito e explicado a seguir. Este trabalho está dividido em três partes, na primeira apresentou-se o problema, mostrando a necessidade de se controlar o comportamento caótico no sistema a ser estudado. Mostrou-se o funcionamento do microscópio atômico com todas suas variáveis de funcionamento. Foram geradas as equações de movimento e os resultados são obtidos através de integrações numéricas das equações de movimento, obteve-se oscilações regulares e irregulares (caóticos), os quais dependem da escolha dos parâmetros do sistema. Na segunda parte do trabalho, utilizou-se o método das múltiplas escalas, efetuou-se a busca de uma solução analítica aproximada para o movimento estacionário do sistema, que foi obtida através de técnicas de perturbações. Este método foi desenvolvido foi desenvolvido por [10] para controlar estes sistemas / The atomic force microscope system has become a popular and useful instrument to measure the intermolecular forces with atomic-resolution that can be applied in electronics, biological analysis, materials, semiconductors etc. This work studies the complex nonlinear dynamic behavior of the probe tip between the sample and cantilever of an atomic force microscope using numeral simulations, method of multiple scales, and optimal linear control. This work concerns of three parts, in the first we will make the presentation of the AFM, showing various models of AFM. In second part, regular and irregular (chaotic) behaviors depend of the physical parameters and can be observed when a numerical integration is performed. When the dynamic system of the AFM becomes a chaotic oscillator a computational and analytical study of the nonlinear dynamic behavior of the AFM oscillator is proposed and it is obtained by perturbations method. The third part is dedicated to the application and performance of the linear feedback control for the suppressing of the chaotic motion of a non ideal system, theses systems are numerically studied. We use the method developed by [10] to control both the non-ideal system. This method seeks to find an optimal linear feedback control where they find - if conditions for the application of linear control in non-linear, ensuring the stability of the problem
64

ESTUDO DAS EQUAÇÕES DO TERCEIRO GRAU NO ENSINO MÉDIO A PARTIR DA EQUAÇÃO DE VAN DER WAALS

Matos, Erivelto Bauer de 30 May 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Normally, the Basic Education comprises the study of the equations of first and second degree. Most of the textbooks do not address higher order equations. For this reason, we developed a didactic proposal addressing the third degree equation in Hight School. Thus, our main objective is to verify the feasibility of studying cubic equations in this stage of education. However, we began our study having as a motivator trouble finding the approximate number of molecules of air (real gas) contained in a car tire on road conditions, which allowed us to find the number of moles in the Van der Waals Equations and with that, we fall back on solving an equation of the third degree starting it is study. / Normalmente a Educação Básica contempla o estudo das equações do primeiro e segundo grau. Em sua maioria, os livros didáticos não abordam equações de ordem superior. Em razão disso, elaboramos uma proposta didática abordando as equações do terceiro grau no Ensino Médio. Dessa forma, nosso principal objetivo é verificar a viabilidade de se estudar equações cúbicas nesta etapa de ensino. Iniciamos o nosso estudo tendo como problema motivador encontrar o número aproximado de moléculas de ar atmosférico (gás real) contido em um pneu de carro em condições de rodagem, o qual nos possibilitou descobrir o número de mols na Equação de Van der Waals e com isso, recaímos na resolução de uma equação do terceiro grau dando início ao seu estudo.
65

Electrical Transport in the Hybrid Structures of 2D Van Der Waals Materials and Perovskite Oxide

Sahoo, Anindita January 2016 (has links) (PDF)
Perovskite oxides have provided a wide variety of exotic functionalities based on their unique physical and chemical properties. By combining different perovskite oxides, interesting physical phenomena have been observed at the interfaces of perovskite heterostructures. The most interesting among these phenomena is the formation of two dimensional electron gas at the interface of two perovskite materials SrTiO3 and LaAlO3 which led to a number of fascinating physical properties such as metal-insulator transition, super-conductivity, large negative magnetoresistance and so on. This has raised the interest in exploiting the interface of various hybrids structures built on the perovskite oxide backbone. On the other hand, the two dimensional (2D) van der Waals materials such as graphene, MoS2, boron nitride etc. represent a new paradigm in the 2D electron-ics. The functionalities of these individual materials have been combined to obtain new enriched functionalities by stacking different materials together forming van der Waals heterostructures. In this work, we present a detailed study of the interface in hybrid structures made of vander Waals materials (graphene and MoS2) and their hybrids with a perovskite material namely, SrTiO3 which is known as the building block of complex oxide heterostructures. In graphene-MoS2 vertical heterostructure, we have carried out a detailed set of investigations on the modulation of the Schottky barrier at the graphene-MoS2 interface with varying external electric field. By using different stacking sequences and device structures, we obtained high mobility at large current on-off ratio at room temperature along with a tunable Schottky barrier which can be varied as high as ∼ 0.4 eV by applying electric field. We also explored the interface of graphene and SrTiO3 as well as MoS2 and SrTiO3 by electrical transport and low frequency 1/f noise measurements. We observed a hysteretic feature in the transfer characteristics of dual gated graphene and MoS2 field effect transistors on SrTiO3. The dual gated geometry enabled us to measure the effective capacitance of SrTiO3 interface which showed an enhancement indicating the possible existence of negative capacitance developed by the surface dipoles at the interface of SrTiO3 and the graphene or MoS2 channel. Our 1/f noise study and the analysis of higher order statistics of noise also support the possibility of electric field-driven reorient able surface dipoles at the interface.
66

Algoritmos de estimação de distribuição para predição ab initio de estruturas de proteínas / Estimation of distribution algorithms for ab initio protein structure prediction

Daniel Rodrigo Ferraz Bonetti 05 March 2015 (has links)
As proteínas são moléculas que desempenham funções essenciais para a vida. Para entender a função de uma proteína é preciso conhecer sua estrutura tridimensional. No entanto, encontrar a estrutura da proteína pode ser um processo caro e demorado, exigindo profissionais altamente qualificados. Neste sentido, métodos computacionais têm sido investigados buscando predizer a estrutura de uma proteína a partir de uma sequência de aminoácidos. Em geral, tais métodos computacionais utilizam conhecimentos de estruturas de proteínas já determinadas por métodos experimentais, para tentar predizer proteínas com estrutura desconhecida. Embora métodos computacionais como, por exemplo, o Rosetta, I-Tasser e Quark tenham apresentado sucesso em suas predições, são apenas capazes de produzir estruturas significativamente semelhantes às já determinadas experimentalmente. Com isso, por utilizarem conhecimento a priori de outras estruturas pode haver certa tendência em suas predições. Buscando elaborar um algoritmo eficiente para Predição de Estruturas de Proteínas livre de tendência foi desenvolvido um Algoritmo de Estimação de Distribuição (EDA) específico para esse problema, com modelagens full-atom e algoritmos ab initio. O fato do algoritmo proposto ser ab initio é mais interessante para aplicação envolvendo proteínas com baixa similaridade, com relação às estruturas já conhecidas. Três tipos de modelos probabilísticos foram desenvolvidos: univariado, bivariado e hierárquico. O univariado trata o aspecto de multi-modalidade de uma variável, o bivariado trata os ângulos diedrais (&Phi; &Psi;) de um mesmo aminoácido como variáveis correlacionadas. O hierárquico divide o problema em subproblemas e tenta tratá-los separadamente. Os resultados desta pesquisa mostraram que é possível obter melhores resultados quando considerado a relação bivariada (&Phi; &Psi;). O hierárquico também mostrou melhorias nos resultados obtidos, principalmente para proteínas com mais de 50 resíduos. Além disso, foi realiza uma comparação com algumas heurísticas da literatura, como: Busca Aleatória, Monte Carlo, Algoritmo Genético e Evolução Diferencial. Os resultados mostraram que mesmo uma metaheurística pouco eficiente, como a Busca Aleatória, pode encontrar a solução correta, porém utilizando muito conhecimento a priori (predição que pode ser tendenciosa). Por outro lado, o algoritmo proposto neste trabalho foi capaz de obter a estrutura da proteína esperada sem utilizar conhecimento a priori, caracterizando uma predição puramente ab initio (livre de tendência). / Proteins are molecules that perform critical roles in the living organism and they are essential for their lifes. To understand the function of a protein, its 3D structure should be known. However, to find the protein structure is an expensive and a time-consuming task, requiring highly skilled professionals. Aiming to overcome such a limitation, computational methods for Protein Structure Prediction (PSP) have been investigated, in order to predict the protein structure from its amino acid sequence. Most of computational methods require knowledge from already determined structures from experimental methods in order to predict an unknown protein. Although computational methods such as Rosetta, I-Tasser and Quark have showed success in their predictions, they are only capable to predict quite similar structures to already known proteins obtained experimentally. The use of such a prior knowledge in the predictions of Rosetta, I-Tasser and Quark may lead to biased predictions. In order to develop a computational algorithm for PSP free of bias, we developed an Estimation of Distribution Algorithm applied to PSP with full-atom and ab initio model. A computational algorithm with ab initio model is mainly interesting when dealing with proteins with low similarity with the known proteins. In this work, we developed an Estimation of Distribution Algorithm with three probabilistic models: univariate, bivariate and hierarchical. The univariate deals with multi-modality of the distribution of the data of a single variable. The bivariate treats the dihedral angles (Proteins are molecules that perform critical roles in the living organism and they are essential for their lifes. To understand the function of a protein, its 3D structure should be known. However, to find the protein structure is an expensive and a time-consuming task, requiring highly skilled professionals. Aiming to overcome such a limitation, computational methods for Protein Structure Prediction (PSP) have been investigated, in order to predict the protein structure from its amino acid sequence. Most of computational methods require knowledge from already determined structures from experimental methods in order to predict an unknown protein. Although computational methods such as Rosetta, I-Tasser and Quark have showed success in their predictions, they are only capable to predict quite similar structures to already known proteins obtained experimentally. The use of such a prior knowledge in the predictions of Rosetta, I-Tasser and Quark may lead to biased predictions. In order to develop a computational algorithm for PSP free of bias, we developed an Estimation of Distribution Algorithm applied to PSP with full-atom and ab initio model. A computational algorithm with ab initio model is mainly interesting when dealing with proteins with low similarity with the known proteins. In this work, we developed an Estimation of Distribution Algorithm with three probabilistic models: univariate, bivariate and hierarchical. The univariate deals with multi-modality of the distribution of the data of a single variable. The bivariate treats the dihedral angles (&Phi; &Psi;) within an amino acid as correlated variables. The hierarchical approach splits the original problem into subproblems and attempts to treat these problems in a separated manner. The experiments show that, indeed, it is possible to achieve better results when modeling the correlation (&Phi; &Psi;). The hierarchical model also showed that is possible to improve the quality of results, mainly for proteins above 50 residues. Besides, we compared our proposed techniques among other metaheuristics from literatures such as: Random Walk, Monte Carlo, Genetic Algorithm and Differential Evolution. The results show that even a less efficient metaheuristic such as Random Walk managed to find the correct structure, however using many prior knowledge (prediction that may be biased). On the other hand, our proposed EDA for PSP was able to find the correct structure with no prior knowledge at all, so we can call this prediction as pure ab initio (biased-free).
67

Electronic structure and transport in the graphene/MoS₂ heterostructure for the conception of a field effect transistor / Structure électronique et transport dans l'hétérostructure graphène/MoS₂ pour la conception d'un transistor à effet de champ.

Di Felice, Daniela 25 September 2018 (has links)
L'isolement du graphène, une monocouche de graphite composée d'un plan d’atomes de carbone, a démontré qu'il est possible de séparer un seul plan d'épaisseur atomique, que l'on appelle matériau bidimensionnel (2D), à partir des solides de Van de Waals (vdW). Grâce à leur stabilité, différents matériaux 2D peuvent être empilés pour former les hétérostructures de vdW. L'interaction vdW à l'interface étant suffisamment faible, les propriétés spécifiques de chaque matériau demeurent globalement inchangées dans l’empilement. En utilisant une démarche théorique et computationnelle basée sur la théorie de la fonctionnelle de la densité (DFT) et le formalisme de Keldysh-Green, nous avons étudié l'hétérostructure graphène/MoS₂ . Le principal intérêt des propriétés spécifiques du graphène et du MoS₂ pour la conception d'un transistor à effet de champ réside dans la mobilité du graphène, à la base d'un transistor haute performance et dans le gap électronique du MoS₂, à la base de la commutation du dispositif. Tout d'abord, nous avons étudié les effets de la rotation entre les deux couches sur les propriétés électroniques à l'interface, en démontrant que les propriétés électroniques globales ne sont pas affectées par l'orientation. En revanche, les images STM (microscope à effet tunnel) sont différentes pour chaque orientation, en raison d'un changement de densité de charge locale. Dans un deuxième temps, nous avons utilisé l’interface graphène/MoS₂ en tant que modèle très simple de Transistor à Effet de Champ. Nous avons analysé le rôle des hétérostructures de vdW sur la performance du transistor, en ajoutant des couches alternées de graphène et MoS₂ sur l'interface graphène/MoS₂. Il a ainsi été démontré que la forme de la DOS au bord du gap est le paramètre le plus important pour la vitesse de commutation du transistor, alors que si l’on ajoute des couches, il n’y aura pas d’amélioration du comportement du transistor, en raison de l'indépendance des interfaces dans les hétérostructures de vdW. Cependant, cela démontre que, dans le cadre de la DFT, on peut étudier les propriétés de transport des hétérostructures de vdW plus complexes en séparant chaque interface et en réduisant le temps de calcul. Les matériaux 2D sont également étudiés ici en tant que pointe pour STM et AFM (microscope à force atomique) : une pointe de graphène testée sur MoS₂ avec défauts a été comparée aux résultats correspondants pour une pointe en cuivre. La résolution atomique a été obtenue et grâce à l'interaction de vdW entre la pointe et l’échantillon, il est possible d’éviter les effets de contact responsables du transfert d'atomes entre la pointe et l'échantillon. En outre, l'analyse des défauts est très utile du fait de la présence de nouveaux pics dans le gap du MoS₂ : ils peuvent ainsi être utilisés pour récupérer un pic de courant et donner des perspectives pour améliorer la performance des transistors. / The isolation of graphene, a single stable layer of graphite, composed by a plane of carbon atoms, demonstrated the possibility to separate a single layer of atomic thickness, called bidimensional (2D) material, from the van der Waals (vdW) solids. Thanks to their stability, 2D materials can be used to form vdW heterostructures, a vertical stack of different 2D crystals maintained together by the vdW forces. In principle, due to the weakness of the vdW interaction, each layer keeps its own global electronic properties. Using a theoretical and computational approach based on the Density Functional Theory (DFT) and Keldish-Green formalism, we have studied graphene/MoS₂ heterostructure. In this work, we are interested in the specific electronic properties of graphene and MoS₂ for the conception of field effect transistor: the high mobility of graphene as a basis for high performance transistor and the gap of MoS₂ able to switch the device. First, the graphene/MoS₂ interface is electronically characterized by analyzing the effects of different orientations between the layers on the electronic properties. We demonstrated that the global electronic properties as bandstructure and Density of State (DOS) are not affected by the orientation, whereas, by mean of Scanning Tunneling Microscope (STM) images, we found that different orientations leads to different local DOS. In the second part, graphene/MoS₂ is used as a very simple and efficient model for Field Effect Transistor. The role of the vdW heterostructure in the transistor operation is analyzed by stacking additional and alternate graphene and MoS₂ layers on the simple graphene/MoS₂ interface. We demonstrated that the shape of the DOS at the gap band edge is the fundamental parameter in the switch velocity of the transistor, whereas the additional layers do not improve the transistor behavior, because of the independence of the interfaces in the vdW heterostructures. However, this demonstrates the possibility to study, in the framework of DFT, the transport properties of more complex vdW heterostructures, separating the single interfaces and reducing drastically the calculation time. The 2D materials are also studied in the role of a tip for STM and Atomic Force Microscopy (AFM). A graphene-like tip, tested on defected MoS₂, is compared with a standard copper tip, and it is found to provide atomic resolution in STM images. In addition, due to vdW interaction with the sample, this tip avoids the contact effect responsible for the transfer of atoms between the tip and the sample. Furthermore, the analysis of defects can be very useful since they induce new peaks in the gap of MoS₂: hence, they can be used to get a peak of current representing an interesting perspective to improve the transistor operation.
68

Optoelectronic applications of heavily doped GaAs and MoSe₂/FePS₃ heterostructures

Duan, Juanmei 02 March 2022 (has links)
Optoelectronics is quickly becoming a fast emerging technology field. It refers to detect or emit electromagnetic radiation, and convert it into a form that can be read by an integrated measuring device. These devices can be a part of many applications like photodiodes, solar cells, light emitting diode (LED), telecommunications, medical equipment, and more. Due to their different applications, the semiconductor optoelectronic devices can be divided by their operating wavelength and working mechanisms. In this work, I have focused on semiconductor plasmonic systems operating in the mid-infrared and on the optical detectors made of 2D materials operating in the UV-visible spectral range. Mid-infrared plasmonic devices are very attractive for chemical sensing. Our results show that ultra-doped n-type GaAs is ideal for mid-infrared plasmonics, where the plasmon wavelength is controlled by electron concentration and can be as short as 4 μm. Ultra-doped n-type GaAs is achieved using ion implantation of chalcogenides like S and Te followed by nonequillibrium thermal annealing, namely ns-range pulsed laser melting or ms-range flash lamp annealing. I have shown that the maximum electron concentration in our GaAs layer can be as high as 7×10¹⁹ cm⁻³, which is a few times higher than that obtained by alternative techniques. In addition to plasmonic applications, the ultra-doped n-type GaAs shows negative magnetoresistance, making GaAs potential material for quantum devices and spintronic applications. UV-visible optical detectors are made of 2D materials based on van der Waals heterostructures, i.e. transition metal dichalcogenides (TMDCs) e.g. MoSe₂ and transition metal chalcogenophosphates (TMCPs) with a general formula MPX₃ where M=Fe, Ni, Mn and X=S, Se, Te. The external quantum efficiency of a self-driven broadband photodetector made of a few layers of MoSe₂/FePS₃ van der Waals heterojunctions is as high as 12 % at 532 nm. Moreover, it is shown that multilayer MoSe₂ on FePS₃ forms a type-II band alignment, while monolayer MoSe₂ on FePS₃ forms a type-I heterojunction. Due to the type-I band alignment, the PL emission from the monolayer MoSe₂ is strongly enhanced.
69

The application of Van der Waals forces in micro-material handling

Matope, S., Van Der Merwe, A. January 2010 (has links)
Published Article / This paper investigates the challenges of employing Van der Waals forces in micro-material handling since these forces are dominant in micro-material handling systems. The problems include the creation of a dust-free environment, accurate measurement of the micro-force, and the efficient picking and placing of micro-work pieces. The use of vacuum suction, micro-gripper's surface roughness, geometrical configuration and material type are presented as alternatives to overcome the challenges. An atomic force microscope is proposed for the accurate measurement of the Van der Waals force between the gripper and the micro-work piece.
70

Manipulation of Van der Waals' forces by geometrical parameters in micro-material handling

Van der Merwe, A., Matope, S. January 2010 (has links)
Published Article / This paper explores the manipulation of Van der Waals' forces by geometrical parameters in a micro-material handling system. It was observed that the flat-flat interactive surfaces exerted the highest intensity of Van der Waals' forces followed by cone-flat, cylinder-flat, sphere-flat and sphere-sphere interactive surfaces, respectively. A conical micro-gripper proved to be versatile in manipulating the Van der Waals' forces efficiently in a 'picking up' and 'releasing' mechanism of micro-work parts. It was deduced that the pick-up position should be rough and spherical, and the placement position should be smooth and flat for an effective 'pick-and-place' cycle to be realised.

Page generated in 0.0881 seconds