• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Curvature Radius and Offset on Coupling Efficiency in Double-Variable-Curvature Fiber Microlens

Wang, Li-Jin 02 August 2011 (has links)
A study of double-variable-curvature microlenses (DVCM) for promoting coupling efficiency between the high-power 980-nm pumping laser diodes and the single-mode fibers has been proposed. In comparison with the previous works on asymmetric fiber microlenses fabricated by the multi-step processes with complicated fabrication, the advantages of the DVCM structure for achieving high coupling are a single-step fabrication, a reproducible process, and a high-yield output. In the fusing procedure, the slight arc fusion was mainly applied for fine polishing merely instead of reshaping for the reason that the fabricated double-variable-curvature fiber endface (DVCFE) was very close to the ideal shape. Hence, the fabrication time was reduced and the yield was promoted due to the withdrawn step of tip elimination. In this study, the geometric center of the fiber was defined through, the cladding diameter and the core diameter, for comparison to measure the offset. The offset measured by the core diameter was more accurate and coincidence with the coupling efficiency in the experiment. In the fabricated 45 DVCMs, to achieve the average coupling efficiencies higher than 84%, the offsets were ought to be controlled in merely less than 0.6£gm with the curvature radii in the minor axis ranged from 2.4 to 2.9£gm (with tolerance of 0.5£gm). Alternatively, the offsets were ought to be controlled in less than 0.3£gm though the curvature radii in the minor axis ranged from 2.4 to 3.7£gm (with larger tolerance of 1.3£gm). However, it was more difficult to control over the offsets than the curvature radii in the minor axis while fabricating the DVCMs. In conclusion, to achieve higher yield, it was relatively practical to control the offsets of fiber microlenses to be less than 0.6£gm with 2.4 to 2.9£gm curvature radius. As a result, the coupling efficiencies were all higher than 80%.
2

A Study of Double-Variable-Curvature Fiber Microlens

Liu, Yu-da 17 January 2011 (has links)
A study of double-variable-curvature microlenses (DVCM) for promoting coupling efficiency between the high-power 980-nm laser diodes and the single-mode fibers has been proposed. The purpose of the fiber microlens fabrication was to make the mode field match between the laser beam and the fiber as the beam propagating through the fiber microlens. To make the mode match, the shapes of the fiber microlens demanded nothing else but the offset and the curvature radii in minor and major axes. The double-variable-curvature fiber endface (DVCFE) was manufactured through a single-step fully automation grinding process and had less average offset of 0.3£gm, consequently. The radii of curvature in minor and major axis were controlled as an average of 1.2£gm and 33.6£gm, respectively. In the fusing procedure, the slight arc fusion was mainly applied for fine polishing merely instead of reshaping for the reason that the fabricated DVCFE was very close to the ideal shape. Hence, the fabrication time was reduced and the yield was promoted due to the withdrawn step of tip elimination. Furthermore, while the fusion parameters were set to be: fusing distance: 10£gm, arc intensity: 3bits, and fusing time: 200ms in the slight fusion process, the offset was reduced to 0.2£gm due to the shape constraint and surface tension of the DVCFE. And the radii of curvature increased 1.7£gm to 2.9£gm in the minor axis and increased 4.5£gm to 38.1£gm in the major axis, respectively. Owing to the controls of the fully automated grinding procedure and the omission of the tip elimination, the coupling efficiency and yield were improved. As a result, in the experiment, the average and maximum coupling efficiency of 83% and 88% were demonstrated, respectively. And the coupling efficiencies of the 20 samples were higher than 80%. In other words, the proposed DVCM structure of this study was a high coupling efficiency, a high yield output, and reproducible and fully automated single-step grinding process.
3

Simulação numérica de um escoamento transicional sobre uma superfície côncava de curvatura variável com transferência de calor / Numerical Simulation of a transitional flow on a concave surface of variable curvature with heat transfer

Marques, Larissa Ferreira 05 September 2018 (has links)
Nos escoamentos em turbomáquinas temos como principais características a tridimensionalidade, possível ocorrência de separação da camada limite, relaminarização, transição laminar-turbulenta, dentre outros efeitos físicos. De acordo com alguns estudos experimentais em turbinas observouse que a transição laminar-turbulenta pode se estender por até 60% da corda de uma pá de turbina. Uma boa estimativa para se prever corretamente o local da transição é indispensável para que seja obtida uma melhoria na eficiência das turbinas. Escoamentos sobre superfícies côncavas estão sujeitos à instabilidade centrífuga, podendo dar origem a vórtices longitudinais, conhecidos como vórtices de Görtler. Esses vórtices são responsáveis por gerar distorções fortes nos perfis de velocidade e consequentemente nos perfis de temperatura. O presente estudo tem por objetivo estudar a influência da variação da curvatura de uma superfície côncava, e os efeitos do comprimento de onda transversal no processo de transição, e sua influência nas taxas de transferência de calor. Para tal, um código de simulação numérica paralelizado, com alta ordem de precisão, foi utilizado para resolver numericamente as equações de Navier-Stokes. Este código é validado através de comparações entre resultados obtidos com uso da teoria de estabilidade linear, e com resultados de simulações numéricas não lineares. Resultados obtidos evidenciam a influência da variação da curvatura, e os efeitos causados pelo comprimento de onda transversal nas instabilidades de Görtler, e secundária. Tais evidências comprovam que a variação da curvatura pode ser útil no controle do processo de transição laminar-turbulenta, e que as taxas de transferência de calor de um escoamento de Görtler desenvolvido em superfícies de curvatura variável podem ser intensificadas, atingindo valores superiores aos obtidos em escoamentos turbulentos. / Some characteristics of flows in turbomachinery are the three-dimensionality, possible occurrence of separation of the boundary layer, relaminarization, laminar-turbulent transition, among other physical effects. According to some experimental observations in turbines, it has been observed that the laminar-turbulent transition can extend over 60% chord of a turbine blade. A good estimate to correctly predict the location of the transition is essential for an improvement in the efficiency of turbines. Flow over concave surfaces is subjected to centrifugal instability, which may lead to formation of longitudinal vortices, known as the Görtler vortices. These vortices are responsible for generating strong distortions in the velocity profiles and hence the temperature profiles. The current goal aims to study the influence of the curvature variation of a concave surface and the effects of spanwise wavelength on the transition process and its influence on the heat transfer rates. For this, a parallel numerical simulation code, with a high order of precision, was used to numerically solve the Navier-Stokes equations. This code is validated through comparisons between results obtained using linear stability theory, and nonlinear numerical simulations results. Results obtained show the influence of the curvature variation, and the effects caused by the spanwise wavelength on the Görtler and secondary instabilities. This evidence proves that the curvature variation can be useful in the control of the laminar-turbulent transition process, and that heat transfer rates of a Görtler flow developed on variable curvature surfaces can be intensified, and reach values higher than these achieved in turbulent flows.
4

Heat kernel estimates based on Ricci curvature integral bounds / Wärmeleitungskernabschätzungen unter Ricci-Krümmungsintegralschranken

Rose, Christian 09 October 2017 (has links) (PDF)
Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following. Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds. If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques. Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner’s theorem. More precisely, the estimates for the heat kernel obtained above lead to ultracontractive estimates for the heat semigroup and the semigroup generated by the Hodge Laplacian. In turn, we can formulate rigidity results for the triviality of the first cohomology group if the amount of curvature going below a certain positive threshold is small in a suitable sense. If we can only assume such smallness of the negative part of the Ricci curvature, we can bound the Betti number by explicit terms depending on the generalized curvature assumptions in a uniform manner, generalizing certain existing results from the cited literature. / Jede Riemannsche Mannigfaltigkeit besitzt eine minimale Lösung für die Wärmeleitungsgleichung des zur Mannigfaltigkeit gehörigen Dirichlet-Laplaceoperators, den Wärmeleitungskern. Während der letzten Jahrzehnte fanden viele Autoren geometrische Eigenschaften der Mannigfaltigkeiten unter welchen der Wärmeleitungskern eine sogenannte Gaußsche obere Abschätzung besitzt. Insbesondere bestizen sowohl kompakte als auch nichtkompakte Mannigfaltigkeiten mit nach unten beschränkter Ricci-Krümmung solche Gaußschen Abschätzungen. Im kompakten Fall reichten bisher sogar Integralbedingungen an die Ricci-Krümmung aus. Die wichtigen Techniken, um Gaußsche Abschätzungen zu erhalten, sind die Symmetrisierung für kompakte Mannigfaltigkeiten und relative Faber-Krahn- und Gradientenabschätzungen für die Wärmeleitungsgleichung, wobei die ersten beiden auf isoperimetrischen Eigenschaften gewisser Mengen beruhen. In dieser Arbeit verallgemeinern wir die bestehenden Resultate im folgenden Sinne. Lokal gleichmäßig beschränkte Integralschranken an den Negativteil der Ricci-Krümmung ergeben Gaußsche obere Abschätzungen sowohl im kompakten als auch nichtkompakten Fall. Dafür zeigen wir lokale isoperimetrische Ungleichungen unter dieser Voraussetzung und nutzen die relativen Faber-Krahn-Abschätzungen für eine explizite Gaußsche Schranke. Für kompakte Mannigfaltigkeiten können wir sogar die Integralschranken an den Negativteil der Ricci-Krümmung durch die sogenannte Kato-Bedingung ersetzen. In diesem Fall erhalten wir gleichmäßige Gaußsche Abschätzungen mit einer Gradientenabschätzung. Neben den geometrischen Verallgemeinerungen für Gaußsche Schranken nutzen wir unsere Ergebnisse, um Bochners Theorem zu verallgemeinern. Wärmeleitungskernabschätzungen ergeben ultrakontraktive Schranken für die Wärmeleitungshalbgruppe und die Halbgruppe, die durch den Hodge-Operator erzeugt wird. Damit können wir Starrheitseigenschaften für die erste Kohomologiegruppe zeigen, wenn der Teil der Ricci-Krümmung, welcher unter einem positiven Level liegt, in einem bestimmten Sinne klein genug ist. Wenn der Negativteil der Ricci-Krümmung nicht zu groß ist, können wir die erste Betti-Zahl noch immer explizit uniform abschätzen.
5

Heat kernel estimates based on Ricci curvature integral bounds

Rose, Christian 22 August 2017 (has links)
Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following. Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds. If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques. Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner’s theorem. More precisely, the estimates for the heat kernel obtained above lead to ultracontractive estimates for the heat semigroup and the semigroup generated by the Hodge Laplacian. In turn, we can formulate rigidity results for the triviality of the first cohomology group if the amount of curvature going below a certain positive threshold is small in a suitable sense. If we can only assume such smallness of the negative part of the Ricci curvature, we can bound the Betti number by explicit terms depending on the generalized curvature assumptions in a uniform manner, generalizing certain existing results from the cited literature. / Jede Riemannsche Mannigfaltigkeit besitzt eine minimale Lösung für die Wärmeleitungsgleichung des zur Mannigfaltigkeit gehörigen Dirichlet-Laplaceoperators, den Wärmeleitungskern. Während der letzten Jahrzehnte fanden viele Autoren geometrische Eigenschaften der Mannigfaltigkeiten unter welchen der Wärmeleitungskern eine sogenannte Gaußsche obere Abschätzung besitzt. Insbesondere bestizen sowohl kompakte als auch nichtkompakte Mannigfaltigkeiten mit nach unten beschränkter Ricci-Krümmung solche Gaußschen Abschätzungen. Im kompakten Fall reichten bisher sogar Integralbedingungen an die Ricci-Krümmung aus. Die wichtigen Techniken, um Gaußsche Abschätzungen zu erhalten, sind die Symmetrisierung für kompakte Mannigfaltigkeiten und relative Faber-Krahn- und Gradientenabschätzungen für die Wärmeleitungsgleichung, wobei die ersten beiden auf isoperimetrischen Eigenschaften gewisser Mengen beruhen. In dieser Arbeit verallgemeinern wir die bestehenden Resultate im folgenden Sinne. Lokal gleichmäßig beschränkte Integralschranken an den Negativteil der Ricci-Krümmung ergeben Gaußsche obere Abschätzungen sowohl im kompakten als auch nichtkompakten Fall. Dafür zeigen wir lokale isoperimetrische Ungleichungen unter dieser Voraussetzung und nutzen die relativen Faber-Krahn-Abschätzungen für eine explizite Gaußsche Schranke. Für kompakte Mannigfaltigkeiten können wir sogar die Integralschranken an den Negativteil der Ricci-Krümmung durch die sogenannte Kato-Bedingung ersetzen. In diesem Fall erhalten wir gleichmäßige Gaußsche Abschätzungen mit einer Gradientenabschätzung. Neben den geometrischen Verallgemeinerungen für Gaußsche Schranken nutzen wir unsere Ergebnisse, um Bochners Theorem zu verallgemeinern. Wärmeleitungskernabschätzungen ergeben ultrakontraktive Schranken für die Wärmeleitungshalbgruppe und die Halbgruppe, die durch den Hodge-Operator erzeugt wird. Damit können wir Starrheitseigenschaften für die erste Kohomologiegruppe zeigen, wenn der Teil der Ricci-Krümmung, welcher unter einem positiven Level liegt, in einem bestimmten Sinne klein genug ist. Wenn der Negativteil der Ricci-Krümmung nicht zu groß ist, können wir die erste Betti-Zahl noch immer explizit uniform abschätzen.

Page generated in 0.0578 seconds