• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Renormalizability of the open string sigma model and emergence of

W. Kummer, D.V. Vassilevich, Dmitri.Vassilevich@itp.uni-leipzig.de 13 June 2000 (has links)
No description available.
2

A Lei de Weyl para o Laplaciano / The Weyl Law for the Laplacian

Neves, Rafael Moreira 26 June 2019 (has links)
Demonstramos a Lei de Weyl sobre o comportamento assintótico dos autovalores do operador Laplaciano com condições de contorno de Dirichlet em domínios limitados e suaves com o auxílio do núcleo do calor. Para isso, fazemos um estudo dos operadores não-limitados, semigrupos e da transformada de Fourier. Por fim, expomos alguns resultados posteriores motivados pelo artigo de Mark Kac \"Can one hear the shape of a drum?\". / We prove the Weyl Law on the asymptotic behavior of eigenvalues of the Laplace operator with Dirichlet boundary conditions in smooth bounded domains with the help of the heat kernel. To that end, we study unbounded operators, semigroups and the Fourier transform. Lastly, we mention some further results motivated by Mark Kac\'s article \"Can one hear the shape of a drum?\".
3

Short-time asymptotics of heat kernels of hypoelliptic Laplacians on Lie groups

SEGUIN, CAROLINE 11 October 2011 (has links)
This thesis suggests an approach to compute the short-time behaviour of the hypoelliptic heat kernel corresponding to sub-Riemannian structures on unimodular Lie groups of type I, without previously holding a closed form expression for this heat kernel. Our work relies on the use of classical non-commutative harmonic analysis tools, namely the Generalized Fourier Transform and its inverse, combined with the Trotter product formula from the theory of perturbation of semigroups. We illustrate our main results by computing, to our knowledge, a first expression in short-time for the hypoelliptic heat kernel on the Engel and the Cartan groups, for which there exist no closed form expression. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2011-10-08 01:32:32.896
4

O princípio do máximo de Omori-Yau e generalizações

Franco, Felipe de Aguilar 31 January 2014 (has links)
Made available in DSpace on 2016-06-02T20:28:29Z (GMT). No. of bitstreams: 1 5895.pdf: 892631 bytes, checksum: 01dacb877c02765554b75042569f770c (MD5) Previous issue date: 2014-01-31 / Financiadora de Estudos e Projetos / In this work we seek to establish a first contact with Geometric Analysis, aiming the understanding of the Good Shadow Principle of Fontenele and Xavier ([FX11]), which is a generalization of the Omori-Yau Principle. We will expose the basic results that are needed for their comprehension, and extend the study to other topics of Geometric Analysis, as the heat kernel, the existence of exhaustion functions and estimates to the gradient of harmonic functions and subsolutions of the heat equation. Once understood the Good Shadow Principle, we intend to extend it by proving that the class of the second order uniformly bumpable manifolds, introduced by Azagra and Fry in [AF10], also satisfies this principle. / Neste trabalho, procuramos estabelecer um primeiro contato com a Análise Geométrica, tendo como objetivo a compreensão do Princípio da Boa Sombra de Fontenele e Xavier ([FX11]), que é uma generalização do Princípio de Omori-Yau. Apresentaremos resultados básicos necessários para sua compreensão, além de estender o estudo para outros tópicos da Análise Geométrica, como núcleo do calor, funções exaustão e estimativas do gradiente de funções harmônicas e de subsoluções da equação do calor. Uma vez compreendido o Princípio da Boa Sombra, visamos estende-lo provando que a classe de variedades introduzida por Azagra e Fry em [AF10] (second order uniformly bumpable manifolds) também satisfaz este princípio.
5

Neumann problems for second order elliptic operators with singular coefficients

Yang, Xue January 2012 (has links)
In this thesis, we prove the existence and uniqueness of the solution to a Neumann boundary problem for an elliptic differential operator with singular coefficients, and reveal the relationship between the solution to the partial differential equation (PDE in abbreviation) and the solution to a kind of backward stochastic differential equations (BSDE in abbreviation).This study is motivated by the research on the Dirichlet problem for an elliptic operator (\cite{Z}). But it turns out that different methods are needed to deal with the reflecting diffusion on a bounded domain. For example, the integral with respect to the boundary local time, which is a nondecreasing process associated with the reflecting diffusion, needs to be estimated. This leads us to a detailed study of the reflecting diffusion. As a result, two-sided estimates on the heat kernels are established. We introduce a new type of backward differential equations with infinity horizon and prove the existence and uniqueness of both L2 and L1 solutions of the BSDEs. In this thesis, we use the BSDE to solve the semilinear Neumann boundary problem. However, this research on the BSDEs has its independent interest. Under certain conditions on both the "singular" coefficient of the elliptic operator and the "semilinear coefficient" in the deterministic differential equation, we find an explicit probabilistic solution to the Neumann problem, which supplies a L2 solution of a BSDE with infinite horizon. We also show that, less restrictive conditions on the coefficients are needed if the solution to the Neumann boundary problem only provides a L1 solution to the BSDE.
6

Asymptotic behaviors of random walks; application of heat kernel estimates / ランダムウォークの漸近挙動について;熱核評価の応用

Nakamura, Chikara 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20887号 / 理博第4339号 / 新制||理||1623(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 福島 竜輝, 教授 中島 啓, 教授 牧野 和久 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
7

Some inequalities between Ahlfors regular conformal dimension and spectral dimensions for resistance forms / 抵抗形式におけるAhlfors正則共形次元とスペクトル次元との間の不等式

Sasaya, Kôhei 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24391号 / 理博第4890号 / 新制||理||1699(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 梶野 直孝, 教授 並河 良典, 准教授 Croydon David Alexander / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
8

Random walk on uniform spanning tree and loop-erased random walk / 一様スパニングツリーとループ除去ランダムウォークの上のランダムウォーク

Satomi, Watanabe 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25436号 / 情博第874号 / 新制||情||146(附属図書館) / 京都大学大学院情報学研究科先端数理科学専攻 / (主査)准教授 白石 大典, 教授 磯 祐介, 教授 木上 淳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
9

Estimations gaussiennes des noyaux de la chaleur / Gaussian estimates for heat kernels

Kayser, Laurent 11 December 2015 (has links)
Nous revisitons la méthode classique des paramétrices pour en déduire une minoration et une majoration gaussiennes, pour la solution fondamentale d'un opérateur parabolique général sous forme non divergentielle. Nous utilisons ensuite le fait que la fonction de Neumann Green, d'un opérateur parabolique général sur un ouvert borné régulier, peut être construite comme somme de la solution fondamentale et d'une intégrale de type simple couche parabolique pour établir une minoration gaussienne pour cette fonction de Neumann Green. Le point clef de la preuve réside dans l'effet régularisant, en temps, de l'intégrale de type simple couche. Nous démontrons aussi que cette approche peut être adaptée pour démontrer une minoration gaussienne pour la fonction de Green-Neumann correspondante à l'opérateur de Laplace-Beltrami sur un ouvert régulier d'une variété riemannienne compacte sans bord. Nous démontrons ensuite une nouvelle majoration gaussienne pour la fonction de Neumann Green correspondante à l'opérateur de Laplace-Beltrami sur un ouvert Lipschitz d'une variété riemannienne complète. L'intérêt de cette nouvelle majoration est qu'elle ne contient pas le terme habituel d'une exponentielle en temps. Finalement, comme application des estimations gaussiennes, nous donnons un résultat de compacité des potentiels isospectraux en relation avec une formule asymptotique pour les noyaux de la chaleur / We revisit the parametrix method in order to obtain a gaussian two-sided bound for the fundamental solution of a general parabolic operator which is not in a divergence form. Then we use the fact that the Neumann Green function of a general parabolic operator on a regular bounded domain can be constructed as a perturbation of the fundamental solution by a simple-layer potential in order to establish a Gaussian lower bound for this Neumann Green function. The key point of the proof lies in the time-regularising effect of the single-layer potential. We also prove that this method can be adapted to get a lower Gaussian bound for the Neumann heat kernel of the Laplace-Beltrami operator on an open subset of a compact Riemannian manifold. In a second part, we prove a new Gaussian upper bound for the Neumann heat kernel of the Laplace-Beltrami operator on a Lipschitz domain of a complete Riemannian manifold. The principal interest of this new upper bound is that we do not have the usual exponentiel terme in time in this upper bound. In a last part, as an application of the Gaussian estimates, we give a compactness result of isospectral potentials which is in relation to an asymptotic formule for the heat kernels
10

Quantum aspects of classically conformal theories in four and six dimensions

Casarin, Lorenzo 27 July 2021 (has links)
Die perturbative Quantenfeldtheorie ist das am weitesten entwickelte Modell, zur präzisen Analyse vieler verschiedener physikalischer Phänomene. Das Standardwerkzeug der perturbativen QFT sind Feynman-Diagramme. Bei Rechnungen bis zu einer Schleife ist aber auch der Wärmekern eine mächtige Technik. Um in der QFT, über die Störungstheorie hinauszugehen ist Symmetrie von großer Bedeutung. Insbesondere die konforme Symmetrie schränkt die Korrelatoren stark ein. In dieser Arbeit wird sie mit der Average Null Energy Condition (ANEC) kombiniert, um die Hofman-Maldacena-Schranken für die Anomaliekoeffizienten in vier Dimensionen abzuleiten. Im Folgenden untersuchen wir verschiedene Probleme der perturbativen Quantenfeldtheorie. Zunächst studieren wir die Weyl-Anomalie für einen nicht-konformen freien Skalar in einer vierdimensionalen gekrümmten Raumzeit. Wir verstehen die Definition der Anomalie diagrammatisch ohne klassische Symmetrie und wir interpretieren die bekannte Wärmekernberechnung präzise. Dann untersuchen wir Eichtheorien mit höheren Ableitungen in sechs Dimensionen. Diese sind natürliche Kandidaten, um perturbativ nicht-unitäre konforme Theorien zu konstruieren. Die Berechnung erfolgt mit der Wärmekernmethode und wir leiten den allgemeinen Ausdruck des, zuvor nicht Bekannten, relevanten Koeffizienten her. Supersymmetrie sowie das Hinzufügen des Yang-Mills-Terms werden ebenfalls berücksichtigt. Schließlich beginnen wir die Untersuchung der Implikationen der ANEC auf nicht-konforme Feldtheorien, angefangen mit dem selbst-wechselwirkenden Skalar in vier Dimensionen. Der Energiefluss eines Zustands mit einer einzelnen Feldeinfügung wird berechnet. Ausgehend von den perturbativen Euklidischen Korrelatoren im Impulsraum konstruieren wir die relevante Wightman-Funktion, um den Energiefluss auszuwerten. Die Berechnung ist kompliziert, aber wir erhalten das erwartete Ergebnis und eröffnen so die Möglichkeit, interessantere Zustände zu untersuchen. / Perturbative quantum field theory is our most developed framework to accurately analyse many physical phenomena. The standard tool is Feynman diagrams, but at one-loop the heat kernel is also a powerful technique. It is however difficult to go beyond perturbation theory, and symmetry is a key factor. In particular, conformal symmetry strongly restricts the correlators, and have been combined with the average null energy condition (ANEC) to derive the Hofman-Maldacena bounds on the anomaly coefficients in four dimensions. In this thesis we study different problems in perturbative quantum field theory. First, we study the Weyl anomaly for a non-conformal free scalar in a four-dimensional curved spacetime. We diagrammatically understand the definition of the anomaly without classical symmetry, and we precisely interpret the well-known heat kernel calculation. Then, we study higher-derivative gauge theories in six dimensions. These theories are the natural candidate to perturbatively construct non-unitary conformal theories. The calculation is done with the heat kernel method and we derive the general expression of the relevant coefficient, which was previously unknown. Supersymmetry or the addition of a Yang-Mills term are also considered. Finally, we initiate the study of the consequence of the ANEC on non-conformal field theories with the example of the self-interacting scalar in four dimensions. The energy flux of a state with a single field insertion is computed. Starting from the perturbative momentum-space Euclidean correlators, we construct the relevant Wightman function to evaluate the energy flux. The calculation is considerably complicated, but we recover the expected result, opening the possibility of studying more interesting states.

Page generated in 0.0449 seconds