• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une information sur les matrices de covariance : la liaison-information

Michaux, Christian 30 June 1973 (has links) (PDF)
.
2

A consistent test of independence between random vectors

Boglioni Beaulieu, Guillaume 11 1900 (has links)
Tester l’indépendance entre plusieurs vecteurs aléatoires est une question importante en statistique. Puisqu’il y a une infinité de manières par lesquelles une quantité aléatoire X peut dépendre d’une autre quantité aléatoire Y , ce n’est pas une question triviale, et plusieurs tests “classiques” comme Spearman [33], Wilks [40], Kendall [18] ou Puri and Sen [24] sont inefficaces pour détecter plusieurs formes de dépendance. De significatifs progrès dans ce domaine ont été réalisés récemment, par exemple dans Székely et al. [34], Gretton et al. [14] ou Heller et al. [15]. Cela dit, la majorité des tests disponibles détectent l’indépendance entre deux quantités aléatoires uniquement. L’indépendance par paires ne garantissant pas l’indépendance mutuelle, il est pertinent de développer des méthodes testant l’hypothèse d’indépendance mutuelle entre n’importe quel nombre de variables. Dans cette recherche nous proposons un test non-paramétrique et toujours convergent, applicable à un nombre quelconque de vecteurs aléatoires. Précisément, nous étendons la méthode décrite dans Heller et al. [15] de deux manières. Premièrement, nous proposons d’appliquer leur test aux rangs des observations, plutôt qu’aux observations elles-mêmes. Ensuite, nous étendons leur méthode pour qu’elle puisse tester l’indépendance entre un nombre quelconque de vecteurs. La distribution de notre statistique de test étant inconnue, nous utilisons une méthode de permutations pour calculer sa valeur-p. Des simulations sont menées pour obtenir la puissance du test, que nous comparons à celles d’autres test décrits dans Genest and Rémillard [10], Gretton et al. [14], Székely et al. [34], Beran et al. [3] et Heller et al. [15]. Nous investiguons divers exemples et dans plusieurs de ceux-ci la puissance de notre test est meilleure que celle des autres tests. En particulier, lorsque les variables aléatoires sont Cauchy notre test performe bien mieux que les autres. Pour le cas de vecteurs aléatoires strictement discrets, nous présentons une preuve que notre test est toujours convergent. / Testing for independence between random vectors is an important question in statistics. Because there is an infinite number of ways by which a random quantity X can be dependent of another random quantity Y , it is not a trivial question. It has been found that classical tests such has Spearman [33],Wilks [40], Kendall [18] or Puri and Sen [24] are ineffective to detect many forms of dependence. Recent, significant results on the topic include Székely et al. [35], Gretton et al. [14] or Heller et al. [15]. However, most of the available tests can only detect dependence between two random quantities. Because pairwise independence does not guarantee mutual independence, techniques testing the hypothesis of mutual independence between any number of random quantities are required. In this research we propose a non-parametric and universally consistent test of independence, applicable to any number of random vectors of any size. Precisely, we extend the procedure described in Heller et al. [15] in two ways. Firstly, we propose to use the ranks of the observations instead of the observations themselves. Secondly, we extend their method to test for independence between any number of random vectors. As the distribution of our test statistic is not known, a permutation method is used to compute p−values. Then, simulations are performed to obtain the power of the test. We compare the power of our new test to that of other tests, namely those in Genest and Rémillard [10], Gretton et al. [14], Székely et al. [34], Beran et al. [3] and Heller et al. [15]. Examples featuring random variables and random vectors are considered. For many examples investigated we find that our new test has similar or better power than that of the other tests. In particular, when the random variables are Cauchy, our new test outperforms the others. In the case of strictly discrete random vectors, we present a proof that our test is universally consistent.
3

Trois essais sur la modélisation de la dépendance entre actifs financiers

Bosc, Damien 21 June 2012 (has links) (PDF)
Cette thèse porte sur deux aspects de la dépendance entre actifs financiers. La première partie concerne la dépendance entre vecteurs aléatoires. Le premier chapitre consiste en une comparaison d'algorithmes calculant l'application de transport optimal pour le coût quadratique entre deux probabilités sur R^n, éventuellement continues. Ces algorithmes permettent de calculer des couplages ayant une propriété de dépendance extrême, dits couplage de corrélation maximale, qui apparaissent naturellement dans la définition de mesures de risque multivariées. Le second chapitre propose une définition de la dépendance extrême entre vecteurs aléatoires s'appuyant sur la notion de covariogramme ; les couplages extrêmes sont caractérisés comme des couplages de corrélation maximale à modification linéaire d'une des marginales multivariées près. Une méthode numérique permettant de calculer ces couplages est fournie, et des applications au stress-test de dépendance pour l'allocation de portefeuille et la valorisation d'options européennes sur plusieurs sous-jacents sont détaillées. La dernière partie décrit la dépendance spatiale entre deux diffusions markoviennes, couplées à l'aide d'une fonction de corrélation dépendant de l'état des deux diffusions. Une EDP de Kolmogorov forward intégrée fait le lien entre la famille de copules spatiales de la diffusion et la fonction de corrélation. On étudie ensuite le problème de la dépendance spatiale atteignable par deux mouvements Browniens, et nos résultats montrent que certaines copules classiques ne permettent pas de décrire la dépendance stationnaire entre des mouvements Browniens couplés.
4

Sommes et extrêmes en physique statistique et traitement du signal : ruptures de convergences, effets de taille finie et représentation matricielle

Angeletti, Florian 06 December 2012 (has links) (PDF)
Cette thèse s'est développée à l'interface entre physique statistique et traitement statistique du signal, afin d'allier les perspectives de ces deux disciplines sur les problèmes de sommes et maxima de variables aléatoires. Nous avons exploré trois axes d'études qui mènent à s'éloigner des conditions classiques (i.i.d.) : l'importance des événements rares, le couplage avec la taille du système, et la corrélation. Combinés, ces trois axes mènent à des situations dans lesquelles les théorèmes de convergence classiques sont mis en défaut.Pour mieux comprendre l'effet du couplage avec la taille du système, nous avons étudié le comportement de la somme et du maximum de variables aléatoires indépendantes élevées à une puissance dépendante de la taille du signal. Dans le cas du maximum, nous avons mis en évidence l'apparition de lois limites non standards. Dans le cas de la somme, nous nous sommes intéressés au lien entre effet de linéarisation et transition vitreuse en physique statistique. Grâce à ce lien, nous avons pu définir une notion d'ordre critique des moments, montrant que, pour un processus multifractal, celui-ci ne dépend pas de la résolution du signal. Parallèlement, nous avons construit et étudié, théoriquement et numériquement, les performances d'un estimateur de cet ordre critique pour une classe de variables aléatoires indépendantes.Pour mieux cerner l'effet de la corrélation sur le maximum et la somme de variables aléatoires, nous nous sommes inspirés de la physique statistique pour construire une classe de variable aléatoires dont la probabilité jointe peut s'écrire comme un produit de matrices. Après une étude détaillée de ses propriétés statistiques, qui a montré la présence potentielle de corrélation à longue portée, nous avons proposé pour ces variables une méthode de synthèse en réussissant à reformuler le problème en termes de modèles à chaîne de Markov cachée. Enfin, nous concluons sur une analyse en profondeur du comportement limite de leur somme et de leur maximum.
5

Sommes et extrêmes en physique statistique et traitement du signal : ruptures de convergences, effets de taille finie et représentation matricielle / Sums and extremes in statistical physics and signal processing : Convergence breakdowns, finite size effects and matrix representations

Angeletti, Florian 06 December 2012 (has links)
Cette thèse s'est développée à l'interface entre physique statistique et traitement statistique du signal, afin d'allier les perspectives de ces deux disciplines sur les problèmes de sommes et maxima de variables aléatoires. Nous avons exploré trois axes d'études qui mènent à s'éloigner des conditions classiques (i.i.d.) : l'importance des événements rares, le couplage avec la taille du système, et la corrélation. Combinés, ces trois axes mènent à des situations dans lesquelles les théorèmes de convergence classiques sont mis en défaut.Pour mieux comprendre l'effet du couplage avec la taille du système, nous avons étudié le comportement de la somme et du maximum de variables aléatoires indépendantes élevées à une puissance dépendante de la taille du signal. Dans le cas du maximum, nous avons mis en évidence l'apparition de lois limites non standards. Dans le cas de la somme, nous nous sommes intéressés au lien entre effet de linéarisation et transition vitreuse en physique statistique. Grâce à ce lien, nous avons pu définir une notion d'ordre critique des moments, montrant que, pour un processus multifractal, celui-ci ne dépend pas de la résolution du signal. Parallèlement, nous avons construit et étudié, théoriquement et numériquement, les performances d'un estimateur de cet ordre critique pour une classe de variables aléatoires indépendantes.Pour mieux cerner l'effet de la corrélation sur le maximum et la somme de variables aléatoires, nous nous sommes inspirés de la physique statistique pour construire une classe de variable aléatoires dont la probabilité jointe peut s'écrire comme un produit de matrices. Après une étude détaillée de ses propriétés statistiques, qui a montré la présence potentielle de corrélation à longue portée, nous avons proposé pour ces variables une méthode de synthèse en réussissant à reformuler le problème en termes de modèles à chaîne de Markov cachée. Enfin, nous concluons sur une analyse en profondeur du comportement limite de leur somme et de leur maximum. / This thesis has grown at the interface between statistical physics and signal processing, combining the perspectives of both disciplines to study the issues of sums and maxima of random variables. Three main axes, venturing beyond the classical (i.i.d) conditions, have been explored: The importance of rare events, the coupling between the behavior of individual random variable and the size of the system, and correlation. Together, these three axes have led us to situations where classical convergence theorems are no longer valid.To improve our understanding of the impact of the coupling with the system size, we have studied the behavior of the sum and the maximum of independent random variables raised to a power depending of the size of the signal. In the case of the maximum, we have brought to light non standard limit laws. In the case of the sum, we have studied the link between linearisation effect and glass transition in statistical physics. Following this link, we have defined a critical moment order such that for a multifractal process, this critical order does not depend on the signal resolution. Similarly, a critical moment estimator has been designed and studied theoretically and numerically for a class of independent random variables.To gain some intuition on the impact of correlation on the maximum or sum of random variables, following insights from statistical physics, we have constructed a class of random variables where the joint distribution probability can be expressed as a matrix product. After a detailed study of its statistical properties, showing that these variables can exhibit long range correlations, we have managed to recast this model into the framework of Hidden Markov Chain models, enabling us to design a synthesis procedure. Finally, we conclude by an in-depth study of the limit behavior of the sum and maximum of these random variables.

Page generated in 0.0441 seconds