• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 6
  • 5
  • 1
  • Tagged with
  • 87
  • 87
  • 44
  • 42
  • 29
  • 24
  • 24
  • 14
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Integrating Data-driven Control Methods with Motion Planning: A Deep Reinforcement Learning-based Approach

Avinash Prabu (6920399) 08 January 2024 (has links)
<p dir="ltr">Path-tracking control is an integral part of motion planning in autonomous vehicles, in which the vehicle's lateral and longitudinal positions are controlled by a control system that will provide acceleration and steering angle commands to ensure accurate tracking of longitudinal and lateral movements in reference to a pre-defined trajectory. Extensive research has been conducted to address the growing need for efficient algorithms in this area. In this dissertation, a scenario and machine learning-based data-driven control approach is proposed for a path-tracking controller. Firstly, a Deep Reinforcement Learning model is developed to facilitate the control of longitudinal speed. A Deep Deterministic Policy Gradient algorithm is employed as the primary algorithm in training the reinforcement learning model. The main objective of this model is to maintain a safe distance from a lead vehicle (if present) or track a velocity set by the driver. Secondly, a lateral steering controller is developed using Neural Networks to control the steering angle of the vehicle with the main goal of following a reference trajectory. Then, a path-planning algorithm is developed using a hybrid A* planner. Finally, the longitudinal and lateral control models are coupled together to obtain a complete path-tracking controller that follows a path generated by the hybrid A* algorithm at a wide range of vehicle speeds. The state-of-the-art path-tracking controller is also built using Model Predictive Control and Stanley control to evaluate the performance of the proposed model. The results showed the effectiveness of both proposed models in the same scenario, in terms of velocity error, lateral yaw angle error, and lateral distance error. The results from the simulation show that the developed hybrid A* algorithm has good performance in comparison to the state-of-the-art path planning algorithms.</p>
72

<b>INTRALOGISTICS CONTROL AND FLEET MANAGEMENT OF AUTONOMOUS MOBILE ROBOTS</b>

Zekun Liu (18431661) 26 April 2024 (has links)
<p dir="ltr">The emergence of Autonomous Mobile Robots (AMR) signifies a pivotal shift in vehicle-based material handling systems, demonstrating their effectiveness across a broad spectrum of applications. Advancing beyond the traditional Automated Guided Vehicles (AGV), AMRs offer unprecedented flexibility in movement, liberated from electromagnetic guidance constraints. Their decentralized control architecture not only enables remarkable scalability but also fortifies system resilience through advanced conflict resolution mechanisms. Nevertheless, transitioning from AGV to AMR presents intricate challenges, chiefly due to the expanded complexity in path planning and task selection, compounded by the heightened potential for conflicts from their dynamic interaction capabilities. This dissertation confronts these challenges by fully leveraging the technological advancements of AMRs. A kinematic-enabled agent-based simulator was developed to replicate AMR system behavior, enabling detailed analysis of fleet dynamics and interactions within AMR intralogistics systems and their environments. Additionally, a comprehensive fleet management protocol was formulated to enhance the throughput of AMR-based intralogistics systems from an integrated perspective. A pivotal discovery of this research is the inadequacy of existing path planning protocols to provide reliable plans throughout their execution, leading to task allocation decisions based on inaccurate plan information and resulting in false optimality. In response, a novel machine learning enhanced probabilistic Multi-Robot Path Planning (MRPP) protocol was introduced to ensure the generation of dependable path plans, laying a solid foundation for task allocation decisions. The contributions of this dissertation, including the kinematic-enabled simulator, the fleet management protocol, and the MRPP protocol, are intended to pave the way for practical enhancements in autonomous vehicle-based material handling systems, fostering the development of solutions that are both innovative and applicable in industrial practices.<br></p>
73

DEVELOPMENT OF PASSIVE VISION BASED RELATIVE STATION KEEPING FOR UNMANNED SURFACE VEHICLES

Ajinkya Avinash Chaudhary (18430029) 26 April 2024 (has links)
<p dir="ltr">Unmanned surface vehicles (USVs) offer a versatile platform for various maritime applications, including research, surveillance, and search-and-rescue operations. A critical capability for USVs is maintaining position (station keeping) in dynamic environments and coordinating movement with other USVs (formation control) for collaborative missions. This thesis investigates control strategies for USVs operating in challenging conditions. </p><p dir="ltr">The initial focus is on evaluating traditional control methods like Backstepping and Sliding Mode controllers for station keeping in simulated environments with disturbances. The results from these tests pointed towards the need for a more robust control technique, like deep-learning based control for enhanced performance. </p><p dir="ltr">The thesis then explores formation control, a crucial aspect of cooperative USV missions. A vision-based passive control strategy utilizing a virtual leader concept is proposed. This approach leverages onboard cameras to detect markers on other USVs, eliminating the need for direct communication and potentially improving scalability and resilience. </p><p dir="ltr">Then the thesis presents vision-based formation control architecture and the station keeping controller evaluations. Simulation results are presented, analyzed, and used to draw conclusions about the effectiveness of the proposed approaches. Finally, the thesis discusses the implications of the findings and proposes potential future research directions</p>
74

Sun-Synchronous Orbit Slot Architecture Analysis and Development

Watson, Eric 01 May 2012 (has links)
Space debris growth and an influx in space traffic will create a need for increased space traffic management. Due to orbital population density and likely future growth, the implementation of a slot architecture to Sun-synchronous orbit is considered in order to mitigate conjunctions among active satellites. This paper furthers work done in Sun-synchronous orbit slot architecture design and focuses on two main aspects. First, an in-depth relative motion analysis of satellites with respect to their assigned slots is presented. Then, a method for developing a slot architecture from a specific set of user defined inputs is derived.
75

Map Based Sensor Fusion for Lane Boundary Estimation on ADAS / Sensorfusion med Kartdata för Estimering av Körfältsgränser på ADAS

Faghi, Puya January 2023 (has links)
A vehicles ability to detect and estimate its surroundings is important for ensuring the safety of the vehicle and passengers regardless of the level of vehicle autonomy. With an improved road and lane estimation, advanced driver-assistance systems will be able to provide earlier and more accurate warnings and actions to prevent a possible accident. Current lane boundary estimations rely on camera and inertial sensor data to detect and estimate relevant lane boundaries in the vehicles surroundings. The current lane boundary estimation system struggles to provide correct estimations at distances exceeding 75 meters and has a performance which is affected by environmental effects. The methods in this thesis show how map data, together with sensor fusion with radar, camera, inertial measurement unit and global navigation satellite system data is able to provide an improvement to the lane boundary estimations. The map based estimation system is implemented and evaluated for high speed roads (highways and country roads) where lane boundary estimations for distances above 75 meters are needed. The results are conducted in a simulate environment and show how the map based system is able to correct unreliable sensor input to provide more precise boundary estimations. The map based system is also able to provide an up to 36% relative increase in correctly identified objects within ego vehicles lane between 12.5-150 meters in front of ego vehicle. The results indicate the ability to extend the horizon in which driver-assistance functions are able to operate, thus increasing the safety of future autonomous or semi-autonomous vehicles. Future work within the subject is needed to apply map based estimations on urban areas. The precision of such an system also relies on precise positional data. Incorporation of more precise global navigation data would be able to show an increased performance. / Ett fordons förmåga att upptäcka och uppskatta sin omgivning är viktig för att säkerställa fordonets och passagerarnas säkerhet oavsett fordonets autonominivå. Med en förbättrad väg- och körfältsuppskattning kommer avancerade förarassistanssystem att kunna ge tidigare och mer exakta varningar och åtgärder för att förhindra en eventuell olycka. Aktuella estimeringar av körfältsgränser är beroende av kamera och tröghetssensordata för att upptäcka och uppskatta relevanta körfältsgränser i fordonets omgivning. Det nuvarande estimerings-systemet upvisar inkorrekta uppskattningar på avstånd över 75 meter och har en prestanda som påverkas av den omgivande miljön. Metoderna i detta examensarbete visar hur kartdata, tillsammans med sensorfusion av radar, kamera, tröghetsmätenhet och globala satellitnavigeringsdata, kan ge en förbättrad estimering av körfältsgränser. Det kartbaserade systemet är implementerat och utvärderat för höghastighetsvägar (motorvägar och landsvägar) där estimeringar av körfältsgränser för avstånd över 75 meter behövs. Resultaten utförs i en simulerad miljö och visar hur det kartbaserade systemet kan korrigera opålitlig sensorinmatning för att ge mer exakta gränsuppskattningar. Systemet kan också ge en upp till 36% relativ ökning av korrekt identifierade objekt inom ego-fordonets körfält mellan 12.5-150 meter framför ego-fordonet. Resultaten indikerar förmågan att förlänga horisonten som förarassistansfunktioner kan fungera i, vilket ökar säkerheten för framtida autonoma eller halvautonoma fordon. Framtida arbeten inom ämnet behövs för att tillämpa kartbaserade uppskattningar på tätorter. Precisionen hos ett sådant system är också beroende av mer exakt positionsdata. Inkorporering av mer exakt global navigationsdata skulle i detta fall kunna visa en ökad sytemprestanda.
76

Multitarget Tracking Using Multistatic Sensors

SUBRAMANIAM, MAHESWARAN 10 1900 (has links)
<p>In this thesis the problem of multitarget tracking in multistatic sensor networks is studied. This thesis focuses on tracking airborne targets by utilizing transmitters of opportunity in the surveillance region. Passive Coherent Location (PCL) system, which uses existing commercial signals (e.g., FM broadcast, digital TV) as the illuminators of opportunity for target tracking, is an emerging technology in air defence systems. PCL systems have many advantages over conventional radar systems such as low cost, covert operation and low vulnerability to electronic counter measures.</p> <p>One of another opportunistic signals available in the surveillance region is multipath signal. In this thesis, the multipath target return signals from distinct propagation modes that are resolvable by the receiver are exploited. When resolved multipath returns are not utilized within the tracker, i.e., discarded as clutter, potential information conveyed by the multipath detections of the same target is wasted. In this case, spurious tracks are formed using target-originated multipath measurements, but with an incorrect propagation mode assumption. Integrating multipath information into the tracker (and not discarding it) can help improve the accuracy of tracking and reduce the number of false tracks.</p> <p>In this thesis, these opportunistic measurements, i.e., commercial broadcast signals measurements in PCL tracking and resolvable multipath target return measurements in multipath assisted tracking are exploited. We give the optimal formulations for all of the above problems as well as the performance evaluations using PCRLB. Simulation results illustrate the performance of the algorithms.</p> / Doctor of Philosophy (PhD)
77

<b>Advancing Marine Autonomy: Perception, Classification, and Workforce Development for Sustainable Ocean Monitoring</b>

Matthew Joseph Bergman (20378961) 16 December 2024 (has links)
<p dir="ltr">Advances in robotics, artificial intelligence (AI), and image recognition have significantly enhanced the monitoring of marine wildlife populations, which serve as valuable indicators of environmental changes and impacts. However, existing marine wildlife datasets face substantial challenges, including limited realistic data, missing annotations, imbalanced (long-tailed) class distributions, fine-grained class variations, and hierarchical classification complexities.</p><p dir="ltr">In this thesis, a novel approach to realistic marine wildlife detection is proposed, using autonomous underwater vehicles (AUVs) designed to perform multiple vision-based tasks simultaneously. This approach optimizes resource utilization in complex perception systems and enables AUVs to perform wildlife recognition in tandem with core perception functions such as target localization. By leveraging an efficient object detection architecture and loss-based training methods, this work addresses key challenges such as incomplete annotations and the computational constraints of AUV platforms.</p><p dir="ltr">Building on this, this thesis introduces a fine-grained hierarchical classifier capable of adapting to unknown class distributions during testing. By integrating a self-supervised ensemble learning technique with a hierarchical classifier architecture, the proposed solution demonstrates better performance, surpassing baseline models in 7 of 9 evaluation metrics across three diverse test distributions. </p><p dir="ltr">In addition to these contributions to AUV perception systems, we develop methods to prepare engineers for using and developing AUV systems. These methods form a practical and comprehensive curriculum for autonomous systems development, focused on equipping engineers with the skills to deploy advanced perception, planning, and control systems. This curriculum bridges the gap between theoretical knowledge and practical implementation, laying a strong foundation for the next generation of autonomy engineers.</p><p dir="ltr">These three contributions address needs for autonomous AUVs through workforce development and a robust online-offline pipeline for wildlife image recognition and labeling, leveraging the persistent autonomy capabilities of AUVs. By addressing critical technological and educational gaps, this thesis advances marine autonomy and deep learning, making significant strides toward marine wildlife conservation and sustainable ocean monitoring.</p>
78

DESIGN REQUIREMENTS OF HUMAN-DRIVEN,HYBRID, AND AUTONOMOUS TRUCKS FOR COLLISION-AVOIDANCE IN PLATOONING

Shreyas Shanker (18136627) 03 June 2024 (has links)
<p dir="ltr">In this thesis, a MATLAB model was used to simulate a 2-vehicle platoon where the lead truck is a conventional class 8 vehicle while the key parameters of the following truck was tested in various road conditions to minimize Inter vehicular Distance (IVD) and maximize fuel savings while ensuring safety</p>
79

ADAPTIVE GAUSSIAN MIXTURE FILTERING FOR AUTONOMOUS CISLUNAR NAVIGATION

Aneesh Vinod Khilnani (19335283) 06 August 2024 (has links)
<p dir="ltr">This thesis aims to assess the efficacy of adaptive Gaussian mixture filtering for an inertial navigation-based cislunar application. The thesis focuses on a fully autonomous system, where the navigation system is solely reliant on onboard sensors and receives no navigation information from external tracking systems. The proposed adaptive filter is tested under non-ideal conditions. Specifically, this thesis considers the challenging case where range information is unavailable, and instead, only bearings angles with respect to illuminated celestial bodies are measured. The performance of the adaptive filter is compared to the unscented Kalman filter (UKF), and the filter consistency and errors are compared. The proposed filter addresses challenges in linearization errors that accrue in the UKF measurement update equations. The adaptive filter is shown to be a consistent estimator, significantly outperforming the UKF. Considering design requirements for similar navigation missions, recommendations and practical considerations are suggested for future cislunar autonomous navigation applications</p>
80

<b>Persistent Autonomous Maritime Operation with an Underwater Docking Station</b>

Brian Rate Page (10667433) 26 April 2021 (has links)
<div>Exploring and surveilling the marine environment away from shore is critical for scientific, economic, and military purposes as we progress through the 21st century. Until recently, these missions far from shore were only possible using manned surface vehicles. Over the past decade, advances in energy density, actuators, electronics, and controls have enabled great improvements in vehicle endurance, yet, no solution is capable of supporting persistent operation especially when considering power hungry scientific surveys. This dissertation summarizes contributions related to the development of an adaptable underwater docking station and associated navigation solutions to allow applications in the wide range of maritime missions. The adaptable docking system is a novel approach to the standard funnel shaped docking station design that enables the dock to be collapsible, portable, and support a wide range of vehicles. It has been optimized and tested extensively in simulation. Field experiments in both pool and open water validate the simulation results. The associated control strategies for approach and terminal homing are also introduced and studied in simulation and field trials. These strategies are computationally efficient and enable operation in a variety of scenarios and conditions. Combined, the adaptable docking system and associated navigation strategies can form a baseline for future extended endurance missions away from manned support.</div><p></p>

Page generated in 0.1178 seconds