• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An LTE implementation based on a road traffic density model

Rashid, Muhammad Asim January 2013 (has links)
The increase in vehicular traffic has created new challenges in determining the behavior of performance of data and safety measures in traffic. Hence, traffic signals on intersection used as cost effective and time saving tools for traffic management in urban areas. But on the other hand the signalized intersections in congested urban areas are the key source of high traffic density and slow traffic. High traffic density causes the slow network traffic data rate between vehicle to vehicle and vehicle to infrastructure. To match up with the emerging technologies, LTE takes the lead with good packet delivery and versatile to changes in the network due to vehicular movements and density. This thesis is about analyzing of LTE implementation based on a road traffic density model. This thesis work is aimed to use probability distribution function to calculate density values and develop a real traffic scenario in LTE network using density values. In order to analyze the traffic behavior, Aimsun simulator software has been used to represent the real situation of traffic density on a model intersection. For a realistic traffic density model field measurement were used for collection of input data. After calibration and validation process, a close to realty results extracted and used a logistic curve of probability distribution function to find out the density situation on each part of intersection. Similar traffic scenarios were implemented on MATLAB based LTE system level simulator. Results were concluded with the whole traffic scenario of 90 seconds and calculating the throughput at every traffic signal time and section. It is quite evident from the results that LTE system adopts the change of traffic behavior with dynamic nature and allocates more bandwidth where it is more needed.
2

Human Factors Evaluation of an In-Vehicle Active Traffic and Demand Management (ATDM) System

Sykes, Kayla Paris 04 April 2016 (has links)
This research study focused on the development and subsequent evaluation of an in-vehicle Active Traffic and Demand Management (ATDM) system deployed on I-66. The ATDM elements inside the vehicle allowed drivers to remain consistently aware of traffic conditions and roadway requirements even if external signage was inaccessible. Forty participants were accompanied by a member of the research team and experienced the following features from the in-vehicle device (IVD): 1) dynamic speed limits, 2) dynamic lane use/shoulder control, 3) High Occupancy Vehicle (HOV) restrictions, and 4) variable message signs (VMS). This system was equipped with auditory and visual alerts to notify the driver when relevant information was updated. The research questions addressed distraction, desirability, and driver behavior associated with the system. Participant data was collected from the instrumented vehicle, various surveys, and researcher observation. Analysis of Variance (ANOVA) and Tukey-Kramer tests were performed to analyze participant eye glance durations towards the IVD and instrument cluster. Wilcoxon signed rank tests were used to draw conclusions from participant speed data and some survey responses. Several key findings were uncovered related to each research category: 1) the IVD would not be classified as a distraction according to NHTSA distraction guidelines, 2) seventy-three percent of participants would want the in-vehicle technology in their next vehicle, and 3) the speed limit alert motivated participants to alter their speed (based on both survey results and actual participant speed data). / Master of Science
3

Robust-Intelligent Traffic Signal Control within a Vehicle-to-Infrastructure and Vehicle-to-Vehicle Communication Environment

He, Qing January 2010 (has links)
Modern traffic signal control systems have not changed significantly in the past 40-50 years. The most widely applied traffic signal control systems are still time-of-day, coordinated-actuated system, since many existing advanced adaptive signal control systems are too complicated and fathomless for most of people. Recent advances in communications standards and technologies provide the basis for significant improvements in traffic signal control capabilities. In the United States, the IntelliDriveSM program (originally called Vehicle Infrastructure Integration - VII) has identified 5.9GHz Digital Short Range Communications (DSRC) as the primary communications mode for vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) safety based applications, denoted as v2x. The ability for vehicles and the infrastructure to communication information is a significant advance over the current system capability of point presence and passage detection that is used in traffic control systems. Given enriched data from IntelliDriveSM, the problem of traffic control can be solved in an innovative data-driven and mathematical way to produce robust and optimal outputs.In this doctoral research, three different problems within a v2x environment- "enhanced pseudo-lane-level vehicle positioning", "robust coordinated-actuated multiple priority control", and "multimodal platoon-based arterial traffic signal control", are addressed with statistical techniques and mathematical programming.First, a pseudo-lane-level GPS positioning system is proposed based on an IntelliDriveSM v2x environment. GPS errors can be categorized into common-mode errors and noncommon-mode errors, where common-mode errors can be mitigated by differential GPS (DGPS) but noncommon-mode cannot. Common-mode GPS errors are cancelled using differential corrections broadcast from the road-side equipment (RSE). With v2i communication, a high fidelity roadway layout map (called MAP in the SAE J2735 standard) and satellite pseudo-range corrections are broadcast by the RSE. To enhance and correct lane level positioning of a vehicle, a statistical process control approach is used to detect significant vehicle driving events such as turning at an intersection or lane-changing. Whenever a turn event is detected, a mathematical program is solved to estimate and update the GPS noncommon-mode errors. Overall the GPS errors are reduced by corrections to both common-mode and noncommon-mode errors.Second, an analytical mathematical model, a mixed-integer linear program (MILP), is developed to provide robust real-time multiple priority control, assuming penetration of IntelliDriveSM is limited to emergency vehicles and transit vehicles. This is believed to be the first mathematical formulation which accommodates advanced features of modern traffic controllers, such as green extension and vehicle actuations, to provide flexibility in implementation of optimal signal plans. Signal coordination between adjacent signals is addressed by virtual coordination requests which behave significantly different than the current coordination control in a coordinated-actuated controller. The proposed new coordination method can handle both priority and coordination together to reduce and balance delays for buses and automobiles with real-time optimized solutions.The robust multiple priority control problem was simplified as a polynomial cut problem with some reasonable assumptions and applied on a real-world intersection at Southern Ave. & 67 Ave. in Phoenix, AZ on February 22, 2010 and March 10, 2010. The roadside equipment (RSE) was installed in the traffic signal control cabinet and connected with a live traffic signal controller via Ethernet. With the support of Maricopa County's Regional Emergency Action Coordinating (REACT) team, three REACT vehicles were equipped with onboard equipments (OBE). Different priority scenarios were tested including concurrent requests, conflicting requests, and mixed requests. The experiments showed that the traffic controller was able to perform desirably under each scenario.Finally, a unified platoon-based mathematical formulation called PAMSCOD is presented to perform online arterial (network) traffic signal control while considering multiple travel modes in the IntelliDriveSM environment with high market penetration, including passenger vehicles. First, a hierarchical platoon recognition algorithm is proposed to identify platoons in real-time. This algorithm can output the number of platoons approaching each intersection. Second, a mixed-integer linear program (MILP) is solved to determine the future optimal signal plans based on the real-time platoon data (and the platoon request for service) and current traffic controller status. Deviating from the traditional common network cycle length, PAMSCOD aims to provide multi-modal dynamical progression (MDP) on the arterial based on the real-time platoon information. The integer feasible solution region is enhanced in order to reduce the solution times by assuming a first-come, first-serve discipline for the platoon requests on the same approach. Microscopic online simulation in VISSIM shows that PAMSCOD can easily handle two traffic modes including buses and automobiles jointly and significantly reduce delays for both modes, compared with SYNCHRO optimized plans.
4

An Empirical Method of Ascertaining the Null Points from a Dedicated Short-Range Communication (DSRC) Roadside Unit (RSU) at a Highway On/Off-Ramp

Walker, Jonathan Bearnarr 26 September 2018 (has links)
The deployment of dedicated short-range communications (DSRC) roadside units (RSUs) allows a connected or automated vehicle to acquire information from the surrounding environment using vehicle-to-infrastructure (V2I) communication. However, wireless communication using DSRC has shown to exhibit null points, at repeatable distances. The null points are significant and there was unexpected loss in the wireless signal strength along the pathway of the V2I communication. If the wireless connection is poor or non-existent, the V2I safety application will not obtain sufficient data to perform the operation services. In other words, a poor wireless connection between a vehicle and infrastructure (e.g., RSU) could hamper the performance of a safety application. For example, a designer of a V2I safety application may require a minimum rate of data (or packet count) over 1,000 meters to effectively implement a Reduced Speed/Work Zone Warning (RSZW) application. The RSZW safety application is aimed to alert or warn drivers, in a Cooperative Adaptive Cruise Control (CACC) platoon, who are approaching a work zone. Therefore, the packet counts and/or signal strength threshold criterion must be determined by the developer of the V2I safety application. Thus, we selected an arbitrary criterion to develop an empirical method of ascertaining the null points from a DSRC RSU. The research motivation focuses on developing an empirical method of calculating the null points of a DSRC RSU for V2I communication at a highway on/off-ramp. The intent is to improve safety, mobility, and environmental applications since a map of the null points can be plotted against the distance between the DSRC RSU and a vehicle's onboard unit (OBU). The main research question asks: 'What is a more robust empirical method, compared to the horizontal and vertical laws of reflection formula, in determining the null points from a DSRC RSU on a highway on/off ramp?' The research objectives are as follows: 1. Explain where and why null points occur from a DSRC RSU (Chapter 2) 2. Apply the existing horizontal and vertical polarization model and discuss the limitations of the model in a real-world scenario for a DSRC RSU on a highway on/off ramp (Chapter 3 and Appendix A) 3. Introduce an extended horizontal and vertical polarization null point model using empirical data (Chapter 4) 4. Discuss the conclusion, limitations of work, and future research (Chapter 5). The simplest manner to understand where and why null points occur is depicted as two sinusoidal waves: direct and reflective waves (i.e., also known as a two-ray model). The null points for a DSRC RSU occurs because the direct and reflective waves produce a destructive interference (i.e., decrease in signal strength) when they collide. Moreover, the null points can be located using Pythagorean theorem for the direct and reflective waves. Two existing models were leveraged to analyze null points: 1) signal strength loss (i.e., a free space path loss model, or FSPL, in Appendix A) and 2) the existing horizontal and vertical polarization null points from a DSRC RSU. Using empirical data from two different field tests, the existing horizontal and vertical polarization null point model was shown to contain limitations in short distances from the DSRC RSU. Moreover, the existing horizontal and vertical polarization model for null points was extremely challenging to replicate with over 15 DSRC RSU data sets. After calculating the null point for several DSRC RSU heights, the paper noticed a limitation of the existing horizontal and vertical polarization null point model with over 15 DSRC RSU data sets (i.e., the model does not account for null points along the full length of the FSPL model). An extended horizontal and vertical polarization model is proposed that calculates the null point from a DSRC RSU. There are 18 model comparisons of the packet counts and signal strengths at various thresholds as perspective extended horizontal and vertical polarization models. This paper compares the predictive ability of 18 models and measures the fit. Finally, a predication graph is depicted with the neural network's probability profile for packet counts =1 when greater than or equal to 377. Likewise, a python script is provided of the extended horizontal and vertical polarization model in Appendix C. Consequently, the neural network model was applied to 10 different DSRC RSU data sets at 10 unique locations around a circular test track with packet counts ranging from 0 to 11. Neural network models were generated for 10 DSRC RSUs using three thresholds with an objective to compare the predictive ability of each model and measure the fit. Based on 30 models at 10 unique locations, the highest misclassification was 0.1248, while the lowest misclassification was 0.000. There were six RSUs mounted at 3.048 (or 10 feet) from the ground with a misclassification rate that ranged from 0.1248 to 0.0553. Out of 18 models, seven had a misclassification rate greater than 0.110, while the remaining misclassification rates were less than 0.0993. There were four RSUs mounted at 6.096 meters (or 20 feet) from the ground with a misclassification rate that ranged from 0.919 to 0.000. Out of 12 models, four had a misclassification rate greater than 0.0590, while the remaining misclassification rates were less than 0.0412. Finally, there are two major limitations in the research: 1) the most effective key parameter is packet counts, which often require expensive data acquisition equipment to obtain the information and 2) the categorical type (i.e., decision tree, logistic regression, and neural network) will vary based on the packet counts or signal strength threshold that is dictated by the threshold criterion. There are at least two future research areas that correspond to this body of work: 1) there is a need to leverage the extended horizontal and vertical polarization null point model on multiple DSRC RSUs along a highway on/off ramp, and 2) there is a need to apply and validate different electric and magnetic (or propagation) models. / Ph. D. / The deployment of dedicated short-range communications (DSRC) roadside units (RSUs) allows a connected or automated vehicle to acquire information from the surrounding environment using vehicle-to-infrastructure (V2I) communication. However, wireless communication using DSRC has shown to exhibit null points, at repeatable distances. The null points are significant and there was unexpected loss in the wireless signal strength along the pathway of the V2I communication. If the wireless connection is poor or non-existent, the V2I safety application will not obtain sufficient data to perform the operation services. In other words, a poor wireless connection between a vehicle and infrastructure (e.g., RSU) could hamper the performance of a safety application. For example, a designer of a V2I safety application may require a minimum rate of data (or packet count) over 1,000 meters to effectively implement a Reduced Speed/Work Zone Warning (RSZW) application. The RSZW safety application is aimed to alert or warn drivers, in a Cooperative Adaptive Cruise Control (CACC) platoon, who are approaching a work zone. Therefore, the packet counts and/or signal strength threshold criterion must be determined by the developer of the V2I safety application. Thus, we selected an arbitrary criterion to develop an empirical method of ascertaining the null points from a DSRC RSU. The research motivation focuses on developing an empirical method of calculating the null points of a DSRC RSU for V2I communication at a highway on/off-ramp. The intent is to improve safety, mobility, and environmental applications since a map of the null points can be plotted against the distance between the DSRC RSU and a vehicle’s onboard unit (OBU). The main research question asks: “What is a more robust empirical method, compared to the horizontal and vertical laws of reflection formula, in determining the null points from a DSRC RSU on a highway on/off ramp?” The research objectives are as follows: 1. Explain where and why null points occur from a DSRC RSU (Chapter 2) 2. Apply the existing horizontal and vertical polarization model and discuss the limitations of the model in a real-world scenario for a DSRC RSU on a highway on/off ramp (Chapter 3 and Appendix A) 3. Introduce an extended horizontal and vertical polarization null point model using empirical data (Chapter 4) 4. Discuss the conclusion, limitations of work, and future research (Chapter 5). The simplest manner to understand where and why null points occur is depicted as two sinusoidal waves: direct and reflective waves (i.e., also known as a two-ray model). The null points for a DSRC RSU occurs because the direct and reflective waves produce a destructive interference (i.e., decrease in signal strength) when they collide. Moreover, the null points can be located using Pythagorean theorem for the direct and reflective waves. Two existing models were leveraged to analyze null points: 1) signal strength loss (i.e., a free space path loss model, or FSPL, in Appendix A) and 2) the existing horizontal and vertical polarization null points from a DSRC RSU. Using empirical data from two different field tests, the existing horizontal and vertical polarization null point model was shown to contain limitations in short distances from the DSRC RSU. Moreover, the existing horizontal and vertical polarization model for null points was extremely challenging to replicate with over 15 DSRC RSU data sets. After calculating the null point for several DSRC RSU heights, the paper noticed a limitation of the existing horizontal and vertical polarization null point model with over 15 DSRC RSU data sets (i.e., the model does not account for null points along the full length of the FSPL model). An extended horizontal and vertical polarization model is proposed that calculates the null point from a DSRC RSU. There are 18 model comparisons of the packet counts and signal strengths at various thresholds as perspective extended horizontal and vertical polarization models. This paper compares the predictive ability of 18 models and measures the fit. Finally, a predication graph is depicted with the neural network’s probability profile for packet counts =1 when greater than or equal to 377. Likewise, a python script is provided of the extended horizontal and vertical polarization model in Appendix C. Consequently, the neural network model was applied to 10 different DSRC RSU data sets at 10 unique locations around a circular test track with packet counts ranging from 0 to 11. Neural network models were generated for 10 DSRC RSUs using three thresholds with an objective to compare the predictive ability of each model and measure the fit. Based on 30 models at 10 unique locations, the highest misclassification was 0.1248, while the lowest misclassification was 0.000. There were six RSUs mounted at 3.048 (or 10 feet) from the ground with a misclassification rate that ranged from 0.1248 to 0.0553. Out of 18 models, seven had a misclassification rate greater than 0.110, while the remaining misclassification rates were less than 0.0993. There were four RSUs mounted at 6.096 meters (or 20 feet) from the ground with a misclassification rate that ranged from 0.919 to 0.000. Out of 12 models, four had a misclassification rate greater than 0.0590, while the remaining misclassification rates were less than 0.0412. Finally, there are two major limitations in the research: 1) the most effective key parameter is packet counts, which often require expensive data acquisition equipment to obtain the information and 2) the categorical type (i.e., decision tree, logistic regression, and neural network) will vary based on the packet counts or signal strength threshold that is dictated by the threshold criterion. There are at least two future research areas that correspond to this body of work: 1) there is a need to leverage the extended horizontal and vertical polarization null point model on multiple DSRC RSUs along a highway on/off ramp, and 2) there is a need to apply and validate different electric and magnetic (or propagation) models.
5

Designing and simulating a Car2X communication system using the example of an intelligent traffic sign

Shil, Manash 03 March 2015 (has links) (PDF)
The thesis with the title “Designing and simulating a Car2X communication system using the example of an intelligent traffic sign” has been done in Chemnitz University of Technology in the faculty of Computer Science. The purpose of this thesis is to define a layered architecture for Infrastructure to Vehicle (I2V) communication and the implementation of a sample intelligent traffic sign (variable speed limit) application for a Car2X communication system. The layered architecture of this thesis is defined based on three related projects. The application is implemented using the defined layered architecture. Considering the availability of hardware, the implementation is done using the network simulator OMNET++. To check the feasibility of the application three scenarios are created and integrated with the application. The evaluation is done based on the result log files of the simulation which show that the achieved results conform with the expected results, except some minor limitations.
6

De l'impact d'une décision locale et autonome sur les systèmes de transport intelligent à différentes échelles / The impact of local and autonomous decision on intelligent transport systems at different scales

Lebre, Marie-Ange 25 January 2016 (has links)
Cette thèse présente des applications véhiculaires à différentes échelles : de la petite qui permet d'effectuer des tests réels de communication et de service ; à des plus grandes incluant plus de contraintes mais permettant des simulations sur l'ensemble du réseau. Dans ce contexte nous soulignons l'importance d'avoir et de traiter des données réelles afin de pouvoir interpréter correctement les résultats. A travers ces échelles nous proposons différents services utilisant la communication V2V et V2I. Nous ne prétendons pas prendre le contrôle du véhicule, notre but est de montrer le potentiel de la communication à travers différents services. La petite échelle se focalise sur un service à un feu de circulation permettant d'améliorer les temps de parcours et d'attente, et la consommation en CO2 et en carburant. La moyenne échelle se situant sur un rond-point, permet grâce à un algorithme décentralisé, d'améliorer ces mêmes paramètres, mais montre également qu'avec une prise de décision simple et décentralisée, le système est robuste face à la perte de paquet, à la densité, aux comportements humains ou encore aux taux d'équipement. Enfin à l'échelle d'une ville, nous montrons que grâce à des décisions prises de manière locale et décentralisée, avec seulement un accès à une information partielle dans le réseau, nous obtenons des résultats proches des solutions centralisées. La quantité de données transitant ainsi dans le réseau est considérablement diminuée. Nous testons également la réponse de ces systèmes en cas de perturbation plus ou moins importante tels que des travaux, un acte terroriste ou une catastrophe naturelle. Les modèles permettant une prise de décision locale grâce aux informations délivrées autour du véhicule montrent leur potentiel que se soit avec de la communication avec l'infrastructure V2I ou entre les véhicules V2V. / In this thesis we present vehicular applications across different scales: from small scale that allows real tests of communication and services; to larger scales that include more constraints but allowing simulations on the entire network. In this context, we highlight the importance of real data and real urban topology in order to properly interpret the results of simulations. We describe different services using V2V and V2I communication. In each of them we do not pretend to take control of the vehicle, the driver is present in his vehicle, our goal is to show the potential of communication through services taking into account the difficulties outlined above. In the small scale, we focus on a service with a traffic light that improves travel times, waiting times and CO2 and fuel consumption. The medium scale is a roundabout, it allows, through a decentralized algorithm, to improve the same parameters. It also shows that with a simple and decentralized decision-making process, the system is robust to packet loss, density, human behavior or equipment rate. Finally on the scale of a city, we show that local and decentralized decisions, with only a partial access to information in the network, lead to results close to centralized solutions. The amount of data in the network is greatly reduced. We also test the response of these systems in case of significant disruption in the network such as roadworks, terrorist attack or natural disaster. Models, allowing local decision thanks to information delivered around the vehicle, show their potential whatsoever with the V2I communication or V2V.
7

Designing and simulating a Car2X communication system using the example of an intelligent traffic sign

Shil, Manash 03 March 2015 (has links)
The thesis with the title “Designing and simulating a Car2X communication system using the example of an intelligent traffic sign” has been done in Chemnitz University of Technology in the faculty of Computer Science. The purpose of this thesis is to define a layered architecture for Infrastructure to Vehicle (I2V) communication and the implementation of a sample intelligent traffic sign (variable speed limit) application for a Car2X communication system. The layered architecture of this thesis is defined based on three related projects. The application is implemented using the defined layered architecture. Considering the availability of hardware, the implementation is done using the network simulator OMNET++. To check the feasibility of the application three scenarios are created and integrated with the application. The evaluation is done based on the result log files of the simulation which show that the achieved results conform with the expected results, except some minor limitations.
8

A Microscopic Simulation Study of Applications of Signal Phasing and Timing Information in a Connected Vehicle Environment

Njobelo, Gwamaka Lameck 01 January 2018 (has links)
The connected vehicle technology presents an innovative way of sharing information between vehicles and the transportation infrastructure through wireless communications. The technology can potentially solve safety, mobility, and environmental challenges that face the transportation sector. Signal phasing and timing information is one category of information that can be broadcasted through connected vehicle technology. This thesis presents an in-depth study of possible ways signal phasing and timing information can be beneficial as far as safety and mobility are concerned. In total, three studies describing this research are outlined. The first study presented herein focuses on data collection and calibration efforts of the simulation model that was used for the next two studies. The study demonstrated a genetic algorithm procedure for calibrating VISSIM discharge headways based on queue discharge headways measured in the field. Video data was used to first compute intersection discharge headways for individual vehicle queue position and then to develop statistical distributions of discharge headways for each vehicle position. Except for the 4th vehicle position, which was best fitted by the generalized extreme value (GEV) distribution, the Log-logistic distribution was observed to be the best fit distribution for the rest of vehicle positions. Starting with the default values, the VISSIM parameters responsible for determining discharge headways were heuristically adjusted to produce optimal values. The optimal solutions were achieved by minimizing the Root Mean Square Error (RMSE) between the simulated and observed data. Through calibration, for each vehicle position, it was possible to obtain the simulated headways that reflect the means of the observed field headways. However, calibration was unable to replicate the dispersion of the headways observed in the field mainly due to VISSIM limitations. Based on the findings of this study, future work on calibration in VISSIM that would account for the dispersion of mixed traffic flow characteristics is warranted. The second study addresses the potential of connected vehicles in improving safety at the vicinity of signalized intersections. Although traffic signals are installed to reduce the overall number of collisions at intersections, rear-end collisions are increased due to signalization. One dominant factor associated with rear-end crashes is the indecisiveness of the driver, especially in the dilemma zone. An advisory system to help the driver make the stop-or-pass decision would greatly improve intersection safety. This study proposed and evaluated an Advanced Stop Assist System (ASAS) at signalized intersections by using Infrastructure-to-Vehicle (I2V) and Vehicle-to-Vehicle (V2V) communication. The proposed system utilizes communication data, received from Roadside Unit (RSU), to provide drivers in approaching vehicles with vehicle-specific advisory speed messages to prevent vehicle hard-braking upon a yellow and red signal indication. A simulation test bed was modeled using VISSIM to evaluate the effectiveness of the proposed system. The results demonstrate that at full market penetration (100% saturation of vehicles equipped with on-board communication equipment), the proposed system reduces the number of hard-braking vehicles by nearly 50%. Sensitivity analyses of market penetration rates also show a degradation in safety conditions at penetration rates lower than 40%. The results suggest that at least 60% penetration rate is required for the proposed system to minimize rear-end collisions and improve safety at the signalized intersections. The last study addresses the fact that achieving smooth urban traffic flow requires reduction of excessive stop-and-go driving on urban arterials. Smooth traffic flow comes with several benefits including reduction of fuel consumption and emissions. Recently, more research efforts have been directed towards reduction of vehicle emissions. One such effort is the use of Green Light Optimal Speed Advisory (GLOSA) systems which use wireless communications to provide individual drivers with information on the approaching traffic signal phase and advisory speeds to arrive at the intersection on a green phase. Previously developed GLOSA algorithms do not address the impact of time to discharge queues formed at the intersection. Thus, this study investigated the influence of formed intersection queues on the performance of GLOSA systems. A simulation test-bed was modeled inside VISSIM to evaluate the algorithm’s effectiveness. Three simulation scenarios were designed; the baseline with no GLOSA in place, scenario 2 with GLOSA activated and queue discharge time not considered, and scenario 3 with GLOSA activated and where queue dissipation time was used to compute advisory speeds. At confidence level the results show a significant reduction in the time spent in queue when GLOSA is activated (scenarios 2 and 3). The change in the average number of stops along the corridor was found not to be significant when the base scenario was compared against scenario 2. However, a comparison between scenarios 2 and 3 demonstrates a significant reduction in the average number of stops along the corridor, and also in the time spent waiting in queues
9

Implicit Message Integrity Provision : In Heterogeneous Vehicular Systems / Implicit Integritet i Heterogena Fordonsmiljöer Systems

Molloy, Paul January 2023 (has links)
Vehicles on the road today are complex multi-node computer networks. Security has always been a critical issue in the automotive computing industry. It is becoming even more crucial with the advent of autonomous vehicles and driver assistant technology. There is potential for attackers to control vehicles maliciously. Traditionally Original Equipment Manufacturers have relied on physical security and a firewall to secure vehicles but with network connected and autonomous capable vehicles this is not enough. The concept of defence in depth is required. This means not trusting that internal traffic inside the firewall is benign. Each node in the vehicles network should be able to verify the authenticity and validity of communications it receives from other nodes. Implementation of the crypto-graphic systems for doing this is error prone. Therefore a key issue in the thesis is reducing the attack surface by developing these checks in the autonomous vehicle stack in a scalable way so the programmer does not have to be aware of this security layer on a day-to-day basis nor re-implement it for each node in these heterogeneous systems. Although message integrity and authenticity verification have been studied and implemented in many fields, the area of heterogeneous autonomous systems present unique research challenges. There are tight performance constraints due to the real time requirements for vehicle control systems and data publishing rates. It is an open question if this approach can achieve performance within the bounds required for a reliable autonomous vehicle. Additionally the security benefit of scalably automatically generating the message integrity verification code across all of the nodes in a heterogeneous system would help the field quantify the defect reduction and security benefit of this kind of code generation on complex software systems. / Dagens fordon på vägarna är komplexa datanät med flera noder. Säkerheten har alltid varit en viktig fråga inom bilindustrin. Det blir ännu viktigare i och med tillkomsten av autonoma fordon och förarassistentteknik. Det finns en potential för angripare att styra fordon på ett illvilligt sätt. Traditionellt har tillverkare av originalutrustning förlitat sig på fysisk säkerhet och en brandvägg för att säkra fordonen, men med nätverksanslutna och autonoma fordon räcker detta inte längre. Begreppet försvar på djupet är nödvändigt. Detta innebär att man inte kan lita på att den interna trafiken innanför brandväggen är godartad. Varje nod i fordonets nätverk bör kunna kontrollera äktheten och giltigheten hos den kommunikation som den tar emot från andra noder. Genomförandet av kryptografiska system för att göra detta är felkänsligt. En viktig fråga i avhandlingen är därför att minska angreppsytan genom att utveckla dessa kontroller i det autonoma fordonet på ett skalbart sätt så att programmeraren inte behöver vara medveten om detta säkerhetslager dagligen eller implementera det på nytt för varje nod i dessa heterogena system. Även om meddelandeintegritet och äkthetskontroll har studerats och genomförts inom många områden, innebär området heterogena autonoma system unika forskningsutmaningar. Det finns snäva prestandabegränsningar på grund av realtidskraven för fordonskontrollsystem och datapubliceringshastigheter. Det är en öppen fråga om detta tillvägagångssätt kan uppnå prestanda inom de gränser som krävs för ett tillförlitligt autonomt fordon. Dessutom skulle säkerhetsfördelarna med en skalbar automatisk generering av koden för verifiering av meddelandets integritet över alla noder i ett heterogent system hjälpa fältet att kvantifiera felminskningen och säkerhetsfördelarna med denna typ av kodgenerering i komplexa programvarusystem.
10

Localisation et transmissions sécurisées pour la communication Véhicule à Infrastructure (V2I) : Application au service de télépéage ITS-G5 / Localization and secure transmissions for Vehicle to Infrastructure communication (V2I) : Application to the electronic toll service using the ITS-G5 technology

Randriamasy, Malalatiana 24 May 2019 (has links)
La localisation précise des véhicules et la sécurité des échanges sont deux grands axes qui font la fiabilité des services fournis dans les systèmes de transport intelligent. Ces dernières années, elles font l’objet de nombreux projets de recherche pour des champs d’application divers. Dans cette thèse, le contexte d’application est la réalisation d’un service de télépéage utilisant la technologie ITS-G5. Cette technologie de communication sans-fil permet dans un premier temps le partage des informations de sécurité routière entre les véhicules (V2V), le véhicule et l’infrastructure (V2I). Dans cette thèse, on propose une architecture permettant d’échanger des transactions de télépéage utilisant les équipements communicants en ITS-G5 embarqués dans les véhicules connectés et les unités bord de route (UBR) de l’infrastructure. Les problématiques de nos travaux de recherche se concentrent sur la méthode de localisation des véhicules ayant effectué la transaction afin de pouvoir la valider et sur la sécurité de l’architecture proposée pour assurer l’échange de cette transaction. Afin de bien localiser les véhicules lors du passage au péage, notre approche propose la compréhension de la cinématique du véhicule par une modélisation adéquate à partir des données recueillies dans les messages coopératifs (CAM : Cooperative Awareness Message) en approche du péage. Cela améliorera les informations de géolocalisation déjà présentes. Notre objectif est d’arriver à une précision de moins d’un mètre pour distinguer 2 véhicules adjacents. D’autre part, le protocole de sécurité proposé permet d’assurer l’authentification des équipements participant à l’échange et à la validation de la transaction, l’intégrité des données échangées ainsi que la confidentialité des échanges compte tenu du contexte de communication sans-fil et de la sensibilité des données échangées. Une preuve de concept de la solution de télépéage utilisant la technologie ITS-G5 est développée et intègre nos deux contributions. / The precise localization of vehicles and the security of communication are requirements that make almost of the services provided in intelligent transport systems (ITS) more reliable. In recent years, they have been the subject of numerous research projects for various fields of application. In this thesis, the context is the development of an electronic toll service using the ITS-G5 technology. This wireless communication technology initially allows the sharing of traffic safety information between vehicles (V2V), vehicle and infrastructure (V2I). In our work, we propose a tolling application using equipment operating in ITS-G5 embedded in the connected vehicles and roadside units. For this, ensuring both precise geolocation of the vehicles and security of communication are required to validate the transaction.In order to properly locate the vehicles during the toll crossing, our approach is based on the understanding of the kinematics of the vehicle through a suitable modeling from the data collected in the cooperative messages (called CAM: Cooperative Awareness Message). This approach aims to improve the geolocation information already present in the message. Our goal is to achieve vehicle localization with an accuracy lower than one meter to distinguish two adjacent vehicles. On the other hand, the proposed tolling protocol ensures the authentication of the equipment or entities involved in the exchange and the validation of the transaction, the integrity of the transmitted data as well as the confidentiality of the communication. In this way, we take into account the context of the wireless communication and the sensitivity of the exchanged data. Our two contributions are integrated in the implemented Proof of Concept of the tolling application using the ITS-G5 technology.

Page generated in 0.0587 seconds