• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Path Selection to Minimize Energy Consumption of an Electric Vehicle using Synthetic Speed Profiles and Predictive Terminal Energy

Moniot, Matthew Louis 19 June 2017 (has links)
Manufacturers of passenger vehicles are experiencing increased pressure from consumers and legislators due to the impact of transportation on the environment. Automotive manufacturers are responding by designing more sustainable forms of transportation through a variety of efforts, including increased vehicle efficiency and the electrification of vehicle powertrains (plug in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV)). An additional method for reducing the environmental impact of personal transport is eco-routing, a methodology which selects routes on the basis of energy consumption. Standard navigation systems offer route alternatives between a user clarified origin and destination when there are multiple paths available. These alternatives are commonly weighted on the basis of minimizing either total travel time (TTT) or trip distance. Eco-routing offers an alternative criterion – minimizing route energy consumption. Calculation of the energy consumption of a route necessitates the creation of a velocity profile which models how the route will be driven and a powertrain model which relates energy consumption to the constructed velocity profile. Existing research efforts related to both of these aspects typically require complex analysis and proprietary vehicle properties. A new approach to weighting the energy consumption of different routes is presented within this paper. The process of synthesizing velocity profiles is an improvement upon simpler models while requiring fewer variables as compared to more complex models. A single input, the maximum acceleration, is required to tune driver aggressiveness throughout an entire route. Additionally, powertrain results are simplified through the application of a new parameter, predictive terminal energy. The parameter uses only glider properties as inputs, as compared to dedicated powertrain models which use proprietary vehicle information as inputs which are not readily available from manufacturers. Application of this research reduces computation time and increases the number of vehicles for which this analysis can be applied. An example routing scenario is presented, demonstrating the capability of the velocity synthesis and predictive terminal energy methodologies. / Master of Science
12

Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes : temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity

Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates.
13

Zvýšení stability chodu odstředivého kompresoru / Extension of Centrifugal Compressor Operational Stability

Růžička, Miroslav Unknown Date (has links)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
14

Doppler optical coherence tomography in determination of suspension viscosity

Lauri, J. (Janne) 17 September 2013 (has links)
Abstract Doppler optical coherence tomography (DOCT) provides a non-disruptive, high resolution and real-time method for imaging flow velocity profiles inside small channels and capillaries. DOCT has been mostly used in the biomedical field to image blood flow. However, applications in the field of rheology have been rare. In this thesis, the time domain DOCT (TD-DOCT) was utilized to measure flow velocity profiles inside capillaries with high resolution. Time domain configuration was chosen due to the ability to implement dynamic focusing and, in addition, to have sufficient velocity range, especially at high speeds. The accuracy and reliability of the laboratory-built DOCT device was verified with Newtonian suspension and, further, the performance was compared to the commercial DOCT. In vivo measurements with slime mould Physarum polycephalum showed the versatility of DOCT to measure the flow velocity profile of a different kind of scattering suspension even with very low flow rates. The effects of multiple scattering on the accuracy of the measured flow velocity profiles were experimentally studied with two phantom configurations. The first case consisted of the static superficial layer, where the plain glass capillary with flowing Intralipid suspension was embedded into a cuvette. In the second case the moving superficial layer was made by introducing a second glass capillary in front of the studied flow. The results showed that multiple scattering has noticeable effect on the accuracy of the measured flow velocity profiles, especially at the deeper regions. Novel application of the DOCT technique is presented by implementing it to a capillary viscometer. As a result, the absolute viscosity of the Newtonian suspension is derived with high precision directly from the measured flow velocity profile and pressure drop without making any assumption of the flow under study. The results are consistent with the reference values measured with the commercial viscometer. / Tiivistelmä Doppler optinen koherenssitomografia (DOCT) on tekniikka, jolla on mahdollista mitata suspensioiden virtausnopeusprofiili virtausta häiritsemättömästi, reaaliaikaisesti ja tarkalla resoluutiolla ohuista kapillaareista. DOCT-tekniikkaa on hyödynnetty erityisesti lääketieteen alueella silmän rakenteen kuvantamisessa ja veren virtausmittauksissa. Tekniikan sovellukset nesteiden reologian tutkimuksessa ovat olleet harvinaisia. Tämän työn tarkoituksena on kehittää DOCT-tekniikkaa ja soveltaa sitä kapillaariviskometrissä viskositeetin määritykseen suoraan mitatusta virtausnopeusprofiilista. Tässä työssä hyödynnettiin laboratoriossa rakennettua aikatason DOCT-laitetta (TD-DOCT), jolla mitattiin virtausnopeusprofiili kapillaarin sisältä mikrometrien resoluutiolla. TD-DOCT valittiin, koska siinä voitiin käyttää dynaamista fokusointia parantamaan sivusuuntaista resoluutiota ja signaali-kohinasuhdetta. Tämän lisäksi se soveltuu laaja-alaisesti eri virtausnopeuksille, erityisesti nopeille virtauksille. Rakennetun DOCT-laitteen tarkkuus ja luotettavuus todennettiin mittaamalla Newtonista suspensiota ja vertaamalla mittaustuloksia kaupallisella DOCT:lla tehtyihin mittauksiin. Mittaukset elävässä organismissa, Physarum polycephalum -limasienessä, osoittavat laitteen soveltuvuuden erilaisten suspensioiden virtausnopeusprofiilin mittaukseen myös hyvin hitaissa virtauksissa. Moninkertaisen sironnan vaikutusta mitattujen profiilien tarkkuuteen tutkittiin kahdella eri konfiguraatiolla. Ensimmäisessä asetelmassa virtausnopeusprofiili mitattiin kapillaarista, joka oli upotettu valoa sirottavaan Intralipid-suspensioon, ja jonka upotussyvyyttä voitiin säätää. Toisessa asetelmassa muodostettiin dynaaminen valoa sirottava kerros asettamalla toinen Intralipidiä sisältävä kapillaari mitattavan kapillaarin eteen. Tulokset osoittavat, että monikertainen sironta vaikuttaa mitatun virtausnopeusprofiilin tarkkuuteen erityisesti kun valoa sirottava kerroksen paksuus kasvaa. Tässä työssä DOCT -tekniikkaa käytetään ensimmäistä kertaa kapillaariviskometrin yhteydessä. Newtonisen suspension absoluuttinen viskositeetti määritetään hyvin tarkasti suoraan mitatusta virtausnopeusprofiilista ja painehäviöstä ilman oletuksia virtaavasta nesteestä. Mitatut viskositeettiarvot vastaavat vertailumittauksia, jotka tehtiin kaupallisella rotaatioviskosimetrilla.
15

CFD simulace vírové struktury v sací troubě Francisovy turbíny (Francis-99) při pod-optimálním provozu - srovnání s měřením / CFD simulation of vortex structure in the Francis turbine draft tube at part load operating point - comparison with measurements

Neděla, Jiří January 2019 (has links)
This master's thesis deals with simulation of vortex structure which is created in the draft tube of Francis turbine, at part load flow conditions. The main objective is to get the most accurate results from the calculations, using the student license of Ansys Fluent 19.1. The results from the calculations are compared with the experiment under the Francis-99 project. Mainlly in terms of dynamic properties of vortex rope – aplitude and frequency of pressure pulsations. Additionaly the time-averaged velocity profiles are compared. I used the test-case provided by NTNU – Norwegian University of Science and Technology under the Francis-99 workshop series.
16

Zvýšení stability chodu odstředivého kompresoru / Extension of Centrifugal Compressor Operational Stability

Růžička, Miroslav January 2016 (has links)
Centrifugal compressors with high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have narrow stable operating region and commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve wider stable operating region, some other anti-surge measures can be used, such as an Internal Recirculation Channel (IRC) located in compressor impeller inlet. This thesis deals with an investigation of IRC influence on centrifugal compressor operational parameters. As a first, the various recirculation channel geometry was studied by using of CFD analysis on simplified computational models. Those geometry, which indicated best results in terms of mass flow and looses in channel were used for testing on a model test device. Subsequently the same geometry was tested on real centrifugal compressor in experimental turbine engine to verify influence of IRC on compressor performance map – pressure ratio and efficiency. Simultaneously the CFD analyses of IRC with a 3D model of compressor impeller were performed and results compared with those, gained from measurement on model and compressor. In addition the measurement of flow field downstream the recirculation channel outlet slot with using of 3-hole pressure probe was performed and compared with flow velocity profiles evaluated from numerical simulations.
17

Laminar heat transfer to Newtonian and Non-Newtonian fluids in tubes. Temperature and velocity profiles were determined experimentally for heating and cooling of Newtonian and non-Newtonian fluids in tubes and the results compared with theoretical predictions incorporating a temperature-dependent viscosity.

Pavlovska-Popovska, Frederika January 1975 (has links)
This thesis is concerned with a theoretical and experimental study of the hydrodynamics and heat transfer characteristics of viscous fluids flowing in tubes under laminar conditions. Particular attention has been given to the effects of the rheological properties and their variation with temperature. A review of problems of this type showed that in spite of the many potential applications of the results in a wide range of industries the subject had not been well developed and further work is justified in order to fill some of the gaps in our knowledge. The early part of the thesis considers the justification of the work in this way and sets down the scope and objectives. A computer progracune was then developed to allow the governing equations of the problem to be solved numerically to give the velocity and temperature profiles and pressure drop for both heating and cooling conditions. The results were also presented in the form of Nusselt numbers as a function of the Graetz numberp since this form is useful for engineering design purposes. The validity of the predictions were then checked by a programme of experimental work. Temperature and velocity profiles have been measured in order to provide a more severe test of the theory than could be imposed by the measurement of overall heat transfer rates. A combined thermocouple probe/Pitot tube was developed to allow simultaneous measurements of velocity and temperature to be made. A Newtonian oil and two non-Newtonian Carbopol solutions were studied. This is the first time that velocity and temperature profiles have been measured for non-Newtonian fluids in this type of situation. The results of the work heve shown that (a) the velocity and temperature profiles and pressure drops are greatly affected by the temperature dependence of the rheological properties and since real viscous fluids are normally very temperature-sensitive it is important that this effect is properly taken into account. (b) the engineering design correlations commonly used for the prediction of heat transfer coefficients can be seriously in error, especially for cooling conditions and when non-Nevitonian fluids are being considered. (c) a mathematical model can be developed which accurately describes all the phenomena and gives predictions which are very close to those observed experimentally. An important objective was to develop more accurate engineering design correlations for non-isothermal pressure drop and heat transfer rates. / University of Bradford
18

Avaliação do desempenho de um medidor de vazão eletromagnetico em situações praticas reais de instalação / Evaluation of the performance of an electromagnetic flowmeter in real practical situations of installation

Martim, André Luís Sotero Salustiano, 1976- 24 February 2005 (has links)
Orientador: Ana Ines Borri Genovez / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-06T04:58:32Z (GMT). No. of bitstreams: 1 Martim_AndreLuisSoteroSalustiano_M.pdf: 5209979 bytes, checksum: cd531521e2ae52a28d5dcfc9952e9dd2 (MD5) Previous issue date: 2005 / Resumo: Martim, André Luís Sotero Salustiano. Avaliação do Desempenho de um Medidor de Vazão Eletromagnético em Situações Práticas Reais de Instalação. Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, 2005. 182 páginas. Dissertação. A busca do melhor aproveitamento dos recursos hídricos é uma característica permanente nas políticas atuais, e o gerenciamento de recursos hídricos implica no equacionamento entre a vazão disponível e a vazão de demanda, ou seja, na medição de vazão. A partir de 2004 os usuários de recursos hídricos são obrigados a declarar os volumes de água captados, é a declaração anual de uso de recursos hídricos. A qualidade da vazão medida depende das técnicas de medição, e um dos principais fatores intervenientes é a condição de instalação do medidor. A avaliação de um medidor eletromagnético de vazão em condições práticas de instalação foi desenvolvida experimentalmente neste trabalho. O medidor de vazão eletromagnético utilizado foi instalado em quatro situações diferentes e os valores de vazão obtidos foram comparados com os de dois medidores instalados adequadamente, um medidor Venturi e um medidor Ultra-sônico. Os ensaios foram desenvolvidos em uma bancada no Laboratório de Hidráulica e Mecânica dos Fluidos da Faculdade de Engenharia Civil da Unicamp. Para a configuração com o medidor eletromagnético instalado à jusante de uma curva 900 de raio curto, o desvio máximo foi de 0,742% com uma incerteza de 0,27%. Para a configuração com o medidor eletromagnético instalado à jusante de duas curvas 900 de raio curto, o desvio máximo foi de 0,447% com uma incerteza de 0,74%. Para a configuração com o medidor eletromagnético instalado à jusante de uma válvula de gaveta, com 50% de abertura, o desvio máximo foi de -2,046% e uma incerteza de 0,50%. Os resultados obtidos mostram claramente que a condição de instalação do medidor frente às singularidades da tubulação afetam sua performance. Os valores de desvio de indicação podem ser considerados baixos ou altos, dependendo da exatidão exigida do medidor dentro do sistema / Abstract: Martim, André Luís Sotero Salustiano. Evaluation of the performance of an electromagnetic flowmeter in real practical situations of installation. Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, 2005. The search of the best utilization of the water resources is a permanent characteristic in the current politics, and the management of water resources implies in the balance equally between the available flow and the flow of demand, or either, in the flow measurement. From 2004 the users of water resources are obliged to declare the caught volumes of water, is the annual declaration of use of water resources. The quality of the measured flow depends on the measurement techniques, and one of the main intervening factors is the condition of installation of the flowmeter. The evaluation of an electromagnetic flowmeter in practical conditions of installation was developed experimentally in this work. The electromagnetic flowmeter was installed in four different situations and the gotten values of flow measurement had been compared with the ones of two flowmeters installed adequately, an Venturi fi owmete r and an Ultrasonic flowmeter. The evaluation had been developed in a work-bench in the Laboratory of Hidraulical and Mechanic of fluid of the College of Civil Engineering of the Unicamp. For the configuration with the electromagnetic flowmeter installed downstream of a 90° elbow of short ray, the maximum deviation was of 0,742% with a 0,27% uncertainty. For the configuration with the electromagnetic flowmeter installed downstream of a two 90° elbow of short ray, the maximum deviation was of 0,447% with a 0,74% uncertainty. For the configuration with the installed electromagnetic flowmeter downstream a drawer valve, with 50% of opening, the maximum deviation was of a -2,046% and uncertainty of 0,50%. The gotten results show clearly that the condition of installation of the flowmeter front to the singularity of the tubing affects its performance. The values of deviation indication can be considered low or high, depending on the demanded accuracy of the flowmeter inside of the system / Mestrado / Recursos Hidricos / Mestre em Engenharia Civil
19

Proudění kapaliny v tenkých mezikruhových spárách vyvolané tlakovým gradientem / Fluid flow in narrow gap between two cylinders induced by pressure gradient

Bartková, Tamara January 2020 (has links)
Diplomová práca je zameraná na popísanie prúdenia tekutiny medzikruhovým potrubím. Tok tekutiny je skúmaný pri viacerých podmienkach, čo vedie k laminárnemu ale aj turbulentnému prúdeniu. Práca obsahuje rešeršnú časť, ktorá opisuje doteraz známe vzťahy popisujúce daný typ prúdenia a takisto skúma spôsoby merania rýchlostného profilu v medzikruhových medzerách. Nasledujúca časť obsahuje návrh výpočtového modelu, popis simulácií prúdenia pri konkrétnych podmienkach a ich vyhodnotenie. Výsledky zo simulačnej časti sú použité pri popise charakteristických vlastností turbulentného prúdenia v medzikruží. Tieto charakteristiky sú použité v ďalšej časti práce, ktorá je cielená na získanie analytického vzťahu, ktorý by popisoval časovo stredovaný rýchlostný profil turbulentného prúdenia v medzikruhovej medzere.
20

A NUMERICAL AND EXPERIMENTAL INVESTIGATION OF TAYLOR FLOW INSTABILITIES IN NARROW GAPS AND THEIR RELATIONSHIP TO TURBULENT FLOW IN BEARINGS

Deng, Dingfeng 02 October 2007 (has links)
No description available.

Page generated in 0.2072 seconds