Spelling suggestions: "subject:"dierband"" "subject:"bauerband""
81 |
Positive-off-diagonal Operators on Ordered Normed Spaces and Maximum Principles for M-OperatorsKalauch, Anke 10 July 2006 (has links)
M-matrices are extensively employed in numerical analysis. These matrices can be generalized by corresponding operators on a partially ordered normed space. We extend results which are well-known for M-matrices to this more general setting. We investigate two different notions of an M-operator, where we focus on two questions: 1. For which types of partially ordered normed spaces do the both notions coincide? This leads to the study of positive-off-diagonal operators. 2. Which conditions on an M-operator ensure that its (positive) inverse satisfies certain maximum principles? We deal with generalizations of the "maximum principle for inverse column entries". / M-Matrizen werden in der numerischen Mathematik vielfältig angewandt. Eine Verallgemeinerung dieser Matrizen sind entsprechende Operatoren auf halbgeordneten normierten Räumen. Bekannte Aussagen aus der Theorie der M-Matrizen werden auf diese Situation übertragen. Für zwei verschiedene Typen von M-Operatoren werden die folgenden Fragen behandelt: 1. Für welche geordneten normierten Räume sind die beiden Typen gleich? Dies führt zur Untersuchung außerdiagonal-positiver Operatoren. 2. Welche Bedingungen an einen M-Operator sichern, dass seine (positive) Inverse gewissen Maximumprinzipien genügt? Es werden Verallgemeinerungen des "Maximumprinzips für inverse Spalteneinträge" angegeben und untersucht.
|
82 |
Contributions to Lattice-like Properties on Ordered Normed SpacesTzschichholtz, Ingo 23 July 2006 (has links) (PDF)
Banachverbände spielen sowohl in der Theorie als auch in der Anwendung von geordneten normierten Räume eine bedeutende Rolle. Einerseits erweisen sich viele in der Praxis relevanten Räume als Banachverbände, andererseits ermöglichen die Vektorverbandsstruktur und die enge Beziehung zwischen Ordnung und Norm ein tiefes Verständnis solcher normierter Räume. An dieser Stelle setzen folgende Überlegungen an: - Die genaue Untersuchung einiger Resultate der reichhaltigen Banachverbandstheorie ließ (zu Recht) vermuten, dass in manchen Fällen die Verbandsnormeigenschaft keine notwendige Voraussetzung ist. In der Literatur gibt es bereits einige interessante Untersuchungen allgemeiner geordneter normierter Räume mit qualifizierten positiven Kegeln und in dem Zusammenhang eine Reihe wertvoller Dualitätsaussagen. An dieser Stelle sind die Eigenschaften der Normalität, der Nichtabgeflachtheit und der Regularität eines Kegels erwähnt, welche selbst im Falle eines mit einer Norm versehenen Vektorverbandes eine schwächere Relation zwischen Ordnung und Norm ergeben als die Verbandsnormeigenschaft. - In einer neueren Arbeit wurde der aus der Theorie der Vektorverbände gut bekannte Begriff der Disjunktheit bereits auf beliebige geordnete Räume verallgemeinert, wobei viele Eigenschaften disjunkter Vektoren, des disjunkten Komplements einer Menge usw., welche aus der Verbandstheorie bekannt sind, erhalten bleiben. Auf entsprechende Weise, d.h. durch das Ersetzen exakter Infima und Suprema durch Mengen unterer bzw. oberer Schranken, können der Modul eines Vektors sowie der Begriff der Solidität einer Menge für geordnete (normierte) Räume eingeführt werden. An solchen Überlegungen knüpft die vorliegende Arbeit an. Im Kapitel m-Normen ======== werden verallgemeinerte Formen der M-Norm Eigenschaft eingeführt und untersucht. AM-Räume und (approximative) Ordnungseinheit-Räume sind Beispiele für geordnete normierte Räume mit m-Norm. Die Schwerpunkte dieses Kapitels sind zum Einen Kegel- und Normeigenschaften dieser Räume und deren Charakterisierung mit Hilfe solcher Eigenschaften und zum Anderen Dualitätsaussagen, wie sie zum Teil bereits aus der Theorie der AM- und AL-Räume bekannt sind. Minimal totale Mengen ===================== Ziel dieses Kapitels ist es, den oben erwähnten verallgemeinerten Disjunktheitsbegiff für geordnete normierte Räume zu untersuchen. Eine zentrale Rolle spielen dabei totale Mengen im Dualraum und insbesondere minimal totale Mengen sowie deren Zusammenhang mit der Disjunktheit von Elementen des Ausgangsraumes. Normierte pre-Riesz Räume ========================= Wie bereits bekannt, lässt sich jeder pre-Riesz Raum ordnungsdicht in einen (bis auf Isomorphie) eindeutigen minimalen Vektorverband einbetten, die so genannte Riesz Vervollständigung. Ist der pre-Riesz Raum normiert und sein positiver Kegel abgeschlossen, dann kann eine Verbandsnorm auf der Riesz Vervollständigung eingeführt werden, welche sich in vielen Fällen als äquivalent zur Ausgangsnorm auf dem pre-Riesz Raum erweist. Es ist allgemein bekannt, dass sich dann auch stetige lineare Funktionale fortsetzen lassen. In diesem Kapitel wird nun untersucht, inwiefern sich Ordnungsrelationen auf einer Menge stetiger linearer Funktionale beim Übergang zur Menge der Fortsetzungen erhalten lassen. Die gewonnenen Erkenntnisse kommen anschließend bei Untersuchungen zur schwachen bzw. schwach*-Topologie auf geordneten normierten Räumen zur Anwendung. Hierbei werden zwei Fragestellungen behandelt. Zum Einen gilt das Augenmerk disjunkten Folgen in geordneten normierten Räumen. Als Beispiel seien ordnungsbeschränkte disjunkte Folgen in geordneten normierten Räumen mit halbmonotoner mNorm genannt, welche stets schwach gegen Null konvergieren. Zum Anderen werden monoton fallende Folgen und Netze bzw. disjunkte Folgen von stetigen linearen Funktionalen auf einem geordneten normierten Raum betrachtet. / Banach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces.
|
83 |
Der Gewinnabschöpfungsanspruch von Verbänden in der Neufassung des 10 des Gesetzes gegen den unlauteren Wettbewerb (UWG) /Schmauß, Maximilian. January 2007 (has links) (PDF)
Univ., Diss.--Tübingen, 2007. / Literaturverz. S. 159 -166.
|
84 |
Concept ApproximationsMeschke, Christian 05 June 2012 (has links) (PDF)
In this thesis, we present a lattice theoretical approach to the field of approximations. Given a pair consisting of a kernel system and a closure system on an underlying lattice, one receives a lattice of approximations. We describe the theory of these lattices of approximations. Furthermore, we put a special focus on the case of concept lattices. As it turns out, approximation of formal concepts can be interpreted as traces, which are preconcepts in a subcontext. / In der vorliegenden Arbeit beschreiben wir einen verbandstheoretischen Zugang zum Thema Approximieren. Ausgehend von einem Kern- und einem Hüllensystem auf einem vollständigen Verband erhält man einen Approximationsverband. Wir beschreiben die Theorie dieser Approximationsverbände. Des Weiteren liegt dabei ein Hauptaugenmerk auf dem Fall zugrundeliegender Begriffsverbände. Wie sich nämlich herausstellt, lassen sich Approximationen formaler Begriffe als Spuren auffassen, welche diese in einem vorgegebenen Teilkontext hinterlassen.
|
85 |
On the lattice of varieties of almost-idempotent semirings / Über den Varietätenverband fast-idempotenter HalbringeMichalski, Burkhard 30 January 2018 (has links) (PDF)
Die Arbeit beschäftigt sich mit fast-idempotenten Halbringen, die eine Verallgemeinerung der idempotenten Halbringe darstellen. Es werden - ausgehend von Halbringen mit zwei Elementen - bis auf isomorphe Bilder sämtliche fast-idempotente Halbringe mit drei Elementen generiert, diejenigen Halbringe, die schon in durch zweielementige Halbringe erzeugten Varietäten liegen, aussortiert und die in den verbleibenden elf Halbringen gültigen Gleichungen charakterisiert. Der Verband L(IA3) der Varietäten generiert durch fast-idempotente Halbringe mit maximal drei Elementen wird mit Hilfe eines Kontexts mit 21 Halbringen als Attribute und 28 trennenden Gleichungen als Objekte vollständig bestimmt und besteht aus 19.901 Varietäten. Im Anschluss richtet sich der Fokus der Arbeit auf den Verband L(IA) der fast-idempotenten Halbringe. In diesem werden insbesondere die Varietät V = [xy = yx, xy = xy+x] und deren Untervarietäten V_k = [x^k = x^(k+1)], k >= 2; untersucht. Für all diese Varietäten wird jeweils eine Konstruktionsmethode für eine abzählbare Kette an Untervarietäten der gegebenen Varietät eingeführt und somit schließlich gezeigt, dass der Verband L(IA) aus mindestens abzählbar unendlich vielen Varietäten besteht.
|
86 |
On the lattice of varieties of almost-idempotent semiringsMichalski, Burkhard 01 December 2017 (has links)
Die Arbeit beschäftigt sich mit fast-idempotenten Halbringen, die eine Verallgemeinerung der idempotenten Halbringe darstellen. Es werden - ausgehend von Halbringen mit zwei Elementen - bis auf isomorphe Bilder sämtliche fast-idempotente Halbringe mit drei Elementen generiert, diejenigen Halbringe, die schon in durch zweielementige Halbringe erzeugten Varietäten liegen, aussortiert und die in den verbleibenden elf Halbringen gültigen Gleichungen charakterisiert. Der Verband L(IA3) der Varietäten generiert durch fast-idempotente Halbringe mit maximal drei Elementen wird mit Hilfe eines Kontexts mit 21 Halbringen als Attribute und 28 trennenden Gleichungen als Objekte vollständig bestimmt und besteht aus 19.901 Varietäten. Im Anschluss richtet sich der Fokus der Arbeit auf den Verband L(IA) der fast-idempotenten Halbringe. In diesem werden insbesondere die Varietät V = [xy = yx, xy = xy+x] und deren Untervarietäten V_k = [x^k = x^(k+1)], k >= 2; untersucht. Für all diese Varietäten wird jeweils eine Konstruktionsmethode für eine abzählbare Kette an Untervarietäten der gegebenen Varietät eingeführt und somit schließlich gezeigt, dass der Verband L(IA) aus mindestens abzählbar unendlich vielen Varietäten besteht.
|
87 |
Concept Approximations: Approximative Notions for Concept LatticesMeschke, Christian 13 April 2012 (has links)
In this thesis, we present a lattice theoretical approach to the field of approximations. Given a pair consisting of a kernel system and a closure system on an underlying lattice, one receives a lattice of approximations. We describe the theory of these lattices of approximations. Furthermore, we put a special focus on the case of concept lattices. As it turns out, approximation of formal concepts can be interpreted as traces, which are preconcepts in a subcontext.:Preface
1. Preliminaries
2. Approximations in Complete Lattices
3. Concept Approximations
4. Rough Sets
List of Symbols
Index
Bibliography / In der vorliegenden Arbeit beschreiben wir einen verbandstheoretischen Zugang zum Thema Approximieren. Ausgehend von einem Kern- und einem Hüllensystem auf einem vollständigen Verband erhält man einen Approximationsverband. Wir beschreiben die Theorie dieser Approximationsverbände. Des Weiteren liegt dabei ein Hauptaugenmerk auf dem Fall zugrundeliegender Begriffsverbände. Wie sich nämlich herausstellt, lassen sich Approximationen formaler Begriffe als Spuren auffassen, welche diese in einem vorgegebenen Teilkontext hinterlassen.:Preface
1. Preliminaries
2. Approximations in Complete Lattices
3. Concept Approximations
4. Rough Sets
List of Symbols
Index
Bibliography
|
88 |
A Connection Between Clone Theory and FCA Provided by Duality TheoryKerkhoff, Sebastian 02 August 2012 (has links)
The aim of this paper is to show how Formal Concept Analysis can be used for the bene t of clone theory. More precisely, we show how a recently developed duality theory for clones can be used to dualize clones over bounded lattices into the framework of Formal Concept Analysis, where they can be investigated with techniques very di erent from those that universal algebraists are usually armed with. We also illustrate this approach with some small examples.
|
89 |
Verband der Metallarbeiter Österreichs / Verband der Eisen- und Metallarbeiter Österreichs / Österreichischer Metallarbeiterverband: Protokoll zur Restitution von NS-verfolgungsbedingt entzogenem Kulturgut (NS-Raubgut)Kulbe, Nadine 30 March 2021 (has links)
No description available.
|
90 |
Deutscher Freidenker-Verband Esslingen: Protokoll zur Restitution von NS-verfolgungsbedingt entzogenem Kulturgut (NS-Raubgut)Kulbe, Nadine 30 March 2021 (has links)
No description available.
|
Page generated in 0.0384 seconds