• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico / Feature extraction of medical images through wavelets aiming at image mining and diagnosis support

Silva, Carolina Yukari Veludo Watanabe da 05 December 2007 (has links)
Sistemas PACS (Picture Archieving and Communication Systems) têm sido desenvolvidos para armazenar de maneira integrada tanto os dados textuais e temporais dos pacientes quanto as imagens dos exames médicos a que eles se submetem para ampliar o uso das imagens no auxílio ao diagnóstico. Outra ferramenta valiosa para o auxílio ao diagnóstico médico são os sistemas CAD (Computer-Aided Diagnosis), para os quais pesquisas recentes mostram que o seu uso melhora significativamente a performance dos radiologistas em detectar corretamente anomalias. Dentro deste contexto, muitos trabalhos têm buscado métodos que possam reduzir o problema do \"gap semântico\", que refere-se ao que é perdido pela descrição sucinta da imagem e o que o usuário espera recuperar/reconhecer utilizando tal descrição. A grande maioria dos sistemas CBIR (do inglês Content-based image retrieval ) utiliza características primárias (baixo nível) para descrever elementos relevantes da imagem e proporcionar recuperação baseada em conteúdo. É necessário \"fundir\" múltiplos vetores com uma caracterí?stica em um vetor composto de características que possui baixa dimensionalidade e que ainda preserve, dentro do possível, as informações necessárias para a recuperação de imagens. O objetivo deste trabalho é propor novos extratores de características, baseados nos subespaços de imagens médicas gerados por transformadas wavelets. Estas características são armazenadas em vetores de características, os quais representam numericamente as imagens e permitindo assim sua busca por semelhança utilizando o conteúdo das próprias imagens. Esses vetores serão usados em um sistema de mineração de imagens em desenvolvimento no GBdI-ICMC-USP, o StARMiner, permitindo encontrar padrões pertencentes às imagens que as levem a ser classificadas em categorias / Picture Archiving and Communication Systems (PACS) aim at storing all the patients data, including their images, time series and textual description, allowing fast and effective transfer of information among devices and workstations. Therefore, PACS can be a powerful tool on improving the decision making during a diagnosing process. The CAD (Computer-Aided Diagnosis) systems have been recently employed to improve the diagnosis confidence, and recent research shows that they can effectively raise the radiologists performance on detecting anomalies on images. Content-based image retrieval (CBIR) techniques are essential to support CAD systems, and can significantly improve the PACS applicability. CBIR works on raw level features extracted from the images to describe the most meaningful characteristics of the images following a specific criterium. Usually, it is necessary to put together several features to compose a feature vector to describe an image more precisely. Therefore, the dimensionality of the feature vector is frequently large and many features can be correlated to each other. The objective of this Master Dissertation is to build new image features, based on wavelet-generated subspaces. The features form the feature vector, which succinctly represent the images and are used to process similarity queries. The feature vectors are analyzed by the StARMiner system, under development in the GbdI-ICMC-USP, in order to find the most meaningful features to represent the images as well as to find patterns in the images that allow them to be classified into categories. The project developed was evaluated with three different image sets and the results are promising
2

Detecção de riscos em lentes esféricas, por luz refletida, através de descritores de Fourier / Detect of scratches in spherical lenses, for light reflected under Fourier descriptors

Barcellos, Robson 06 July 2007 (has links)
Este trabalho apresenta uma metodologia para inspeção de lentes oftalmológicas orgânicas esféricas durante seu processo de polimento. A metodologia consiste na obtenção de uma imagem em uma câmera de vídeo CCD, usando-se luz ultravioleta, da lente a ser inspecionada, e posterior processamento desta imagem para discriminar a presença de riscos de outros artefatos que poderão aparecer na imagem capturada. Para a detecção da presença de riscos foram utilizados os descritores de Fourier. Atenção especial foi dada à iluminação da lente, que é fator determinante na obtenção de uma boa qualidade de imagem. Os resultados mostram a eficiência do método e permitem sua utilização durante o processo de fabricação de lentes. / This work presents a methodology for inspection of spherical organic ophthalmic lenses during the polishing process. The methodology encompasses the capture of an ultraviolet image of the lens under inspection by a CCD video camera and associated processing of the image to discriminate between scratches on the lens and artifacts that can appear on the image. Fourier descriptors were used to detect the existence of scratches. Special attention was given to illumination which is a determining factor in grabbing an image with good quality. The results show that the method is efficient and that it can be used in the lens manufacturing process.
3

Extração de características de imagens médicas utilizando wavelets para mineração de imagens e auxílio ao diagnóstico / Feature extraction of medical images through wavelets aiming at image mining and diagnosis support

Carolina Yukari Veludo Watanabe da Silva 05 December 2007 (has links)
Sistemas PACS (Picture Archieving and Communication Systems) têm sido desenvolvidos para armazenar de maneira integrada tanto os dados textuais e temporais dos pacientes quanto as imagens dos exames médicos a que eles se submetem para ampliar o uso das imagens no auxílio ao diagnóstico. Outra ferramenta valiosa para o auxílio ao diagnóstico médico são os sistemas CAD (Computer-Aided Diagnosis), para os quais pesquisas recentes mostram que o seu uso melhora significativamente a performance dos radiologistas em detectar corretamente anomalias. Dentro deste contexto, muitos trabalhos têm buscado métodos que possam reduzir o problema do \"gap semântico\", que refere-se ao que é perdido pela descrição sucinta da imagem e o que o usuário espera recuperar/reconhecer utilizando tal descrição. A grande maioria dos sistemas CBIR (do inglês Content-based image retrieval ) utiliza características primárias (baixo nível) para descrever elementos relevantes da imagem e proporcionar recuperação baseada em conteúdo. É necessário \"fundir\" múltiplos vetores com uma caracterí?stica em um vetor composto de características que possui baixa dimensionalidade e que ainda preserve, dentro do possível, as informações necessárias para a recuperação de imagens. O objetivo deste trabalho é propor novos extratores de características, baseados nos subespaços de imagens médicas gerados por transformadas wavelets. Estas características são armazenadas em vetores de características, os quais representam numericamente as imagens e permitindo assim sua busca por semelhança utilizando o conteúdo das próprias imagens. Esses vetores serão usados em um sistema de mineração de imagens em desenvolvimento no GBdI-ICMC-USP, o StARMiner, permitindo encontrar padrões pertencentes às imagens que as levem a ser classificadas em categorias / Picture Archiving and Communication Systems (PACS) aim at storing all the patients data, including their images, time series and textual description, allowing fast and effective transfer of information among devices and workstations. Therefore, PACS can be a powerful tool on improving the decision making during a diagnosing process. The CAD (Computer-Aided Diagnosis) systems have been recently employed to improve the diagnosis confidence, and recent research shows that they can effectively raise the radiologists performance on detecting anomalies on images. Content-based image retrieval (CBIR) techniques are essential to support CAD systems, and can significantly improve the PACS applicability. CBIR works on raw level features extracted from the images to describe the most meaningful characteristics of the images following a specific criterium. Usually, it is necessary to put together several features to compose a feature vector to describe an image more precisely. Therefore, the dimensionality of the feature vector is frequently large and many features can be correlated to each other. The objective of this Master Dissertation is to build new image features, based on wavelet-generated subspaces. The features form the feature vector, which succinctly represent the images and are used to process similarity queries. The feature vectors are analyzed by the StARMiner system, under development in the GbdI-ICMC-USP, in order to find the most meaningful features to represent the images as well as to find patterns in the images that allow them to be classified into categories. The project developed was evaluated with three different image sets and the results are promising
4

Detecção de riscos em lentes esféricas, por luz refletida, através de descritores de Fourier / Detect of scratches in spherical lenses, for light reflected under Fourier descriptors

Robson Barcellos 06 July 2007 (has links)
Este trabalho apresenta uma metodologia para inspeção de lentes oftalmológicas orgânicas esféricas durante seu processo de polimento. A metodologia consiste na obtenção de uma imagem em uma câmera de vídeo CCD, usando-se luz ultravioleta, da lente a ser inspecionada, e posterior processamento desta imagem para discriminar a presença de riscos de outros artefatos que poderão aparecer na imagem capturada. Para a detecção da presença de riscos foram utilizados os descritores de Fourier. Atenção especial foi dada à iluminação da lente, que é fator determinante na obtenção de uma boa qualidade de imagem. Os resultados mostram a eficiência do método e permitem sua utilização durante o processo de fabricação de lentes. / This work presents a methodology for inspection of spherical organic ophthalmic lenses during the polishing process. The methodology encompasses the capture of an ultraviolet image of the lens under inspection by a CCD video camera and associated processing of the image to discriminate between scratches on the lens and artifacts that can appear on the image. Fourier descriptors were used to detect the existence of scratches. Special attention was given to illumination which is a determining factor in grabbing an image with good quality. The results show that the method is efficient and that it can be used in the lens manufacturing process.
5

"Recuperação de imagens por conteúdo através de análise multiresolução por Wavelets" / "Content based image retrieval through multiresolution wavelet analysis

Castañon, Cesar Armando Beltran 28 February 2003 (has links)
Os sistemas de recuperação de imagens por conteúdo (CBIR -Content-based Image Retrieval) possuem a habilidade de retornar imagens utilizando como chave de busca outras imagens. Considerando uma imagem de consulta, o foco de um sistema CBIR é pesquisar no banco de dados as "n" imagens mais similares à imagem de consulta de acordo com um critério dado. Este trabalho de pesquisa foi direcionado na geração de vetores de características para um sistema CBIR considerando bancos de imagens médicas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica sucinta de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor "n"-dimensional contendo esses valores. Essa nova representação da imagem pode ser armazenada em uma base de dados, e assim, agilizar o processo de recuperação de imagens. Uma abordagem alternativa para caracterizar imagens para um sistema CBIR é a transformação do domínio. A principal vantagem de uma transformação é sua efetiva caracterização das propriedades locais da imagem. Recentemente, pesquisadores das áreas de matemática aplicada e de processamento de sinais desenvolveram técnicas práticas de "wavelet" para a representação multiescala e análise de sinais. Estas novas ferramentas diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente, elas têm a capacidade de mudar de uma resolução para outra, o que faz delas especialmente adequadas para a análise de sinais não estacionários. A transformada "wavelet" consiste de um conjunto de funções base que representa o sinal em diferentes bandas de freqüência, cada uma com resoluções distintas correspondentes a cada escala. Estas foram aplicadas com sucesso na compressão, melhoria, análise, classificação, caracterização e recuperação de imagens. Uma das áreas beneficiadas, onde essas propriedades têm encontrado grande relevância, é a área médica, através da representação e descrição de imagens médicas. Este trabalho descreve uma abordagem para um banco de imagens médicas, que é orientada à extração de características para um sistema CBIR baseada na decomposição multiresolução de "wavelets" utilizando os filtros de Daubechies e Gabor. Essas novas características de imagens foram também testadas utilizando uma estrutura de indexação métrica "Slim-tree". Assim, pode-se aumentar o alcance semântico do sistema cbPACS (Content-Based Picture Archiving and Comunication Systems), atualmente em desenvolvimento conjunto entre o Grupo de Bases de Dados e Imagens do ICMC--USP e o Centro de Ciências de Imagens e Física Médica do Hospital das Clínicas de Riberão Preto-USP. / Content-based image retrieval (CBIR) refers to the ability to retrieve images on the basis of the image content. Given a query image, the goal of a CBIR system is to search the database and return the "n" most similar (close) ones to the query image according to a given criteria. Our research addresses the generation of feature vectors of a CBIR system for medical image databases. A feature vector is a numeric representation of an image or part of it over its representative aspects. The feature vector is a "n"-dimensional vector organizing such values. This new image representation can be stored into a database and allow a fast image retrieval. An alternative for image characterization for a CBIR system is the domain transform. The principal advantage of a transform is its effective characterization for their local image properties. In the past few years, researches in applied mathematics and signal processing have developed practical "wavelet" methods for the multiscale representation and analysis of signals. These new tools differ from the traditional Fourier techniques by the way in which they localize the information in the time-frequency plane; in particular, they are capable of trading one type of resolution for the other, which makes them especially suitable for the analysis of non-stationary signals. The "wavelet" transform is a set of basis functions that represents signals in different frequency bands, each one with a resolution matching its scale. They have been successfully applied to image compression, enhancements, analysis, classifications, characterization and retrieval. One privileged area of application where these properties have been found to be relevant is medical imaging. In this work we describe an approach to CBIR for medical image databases focused on feature extraction based on multiresolution "wavelets" decomposition, taking advantage of the Daubechies and Gabor. Fundamental to our approach is how images are characterized, such that the retrieval procedure can bring similar images within the domain of interest, using a metric structure indexing, like the "Slim-tree". Thus, it increased the semantic capability of the cbPACS(Content-Based Picture Archiving and Comunication Systems), currently in joined developing between the Database and Image Group of the ICMC--USP and the Science Center for Images and Physical Medic of the Clinics Hospital of Riberão Preto--USP.
6

Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo

Pirolla, Francisco Rocha 19 November 2012 (has links)
Made available in DSpace on 2016-06-02T19:06:00Z (GMT). No. of bitstreams: 1 4756.pdf: 1515606 bytes, checksum: 12146689055c9826f258e527c3ae001a (MD5) Previous issue date: 2012-11-19 / Universidade Federal de Sao Carlos / This work proposes two new techniques of feature vector pre-processing to improve CBIR and image classification systems: a method of feature transformation based on the k-means clustering approach (Feature Transformation based on K-means - FTK) and a method of Weighted Feature Discretization - WFD. The FTK method employs the clustering principle of k-means to compact the feature vector space. The WFD method performs a weighted feature discretization, privileging the most important feature ranges to distinguish images. The proposed methods were employed to pre-process the feature vector in CBIR and in classification approaches, comparing the results with the pre-processing performed by PCA (a well known feature transformation method) and the original feature vector: FTK produced a reduction in the feature vector size with an improving in the query precision and a improvement in the classification accuracy; WFD improved the query precision up to and a improvement in the classification accuracy; the combination of WFD and FTK improved also the query precision and a improvement in the classification accuracy. These are very important results, especially when compared with PCA results, which leads to a minor reduction in the feature vector size, a minor increase in the query precision and a minor increase in the classification accuracy. Also the proposed approaches have linear computational cost where PCA has a cubic computational cost. The results indicate that the proposed approaches are well-suited to perform image feature vector pre-processing improving the overall quality of CBIR and classification systems. / Neste trabalho, propomos diminuir o gap semântico e os problemas de maldição de dimensionalidade apresentando duas técnicas de préprocessamento do vetor de características com o objetivo de melhorar a recuperação de imagens baseada em conteúdo e sistemas de classificação de imagens: um método de redução de dimensionalidade do vetor de características original, baseado no algoritmo k-means, chamado FTK (Feature Transformation based on K-means) e um método de discretização ponderada de características que privilegia as faixas de características mais importantes para distinguir imagens, chamado WFD (Weighted Feature Discretization). Os métodos propostos foram utilizados para pré-processar os vetores de características nas abordagens CBIR e classificação, comparando o pré-processamento executado pelo método PCA e os resultados dos vetores de características originais. O algoritmo FTK promoveu uma redução no tamanho do vetor de características com uma melhoria na precisão da consulta e na precisão de classificação. O algoritmo WFD melhorou a precisão da consulta e classificação; a combinação de dos dois algoritmos propostos também melhorou a precisão da consulta e classificação. Estes resultados são muito importantes, especialmente quando comparados com os resultados do método PCA, que também leva a uma redução no tamanho do vetor de características, a um menor aumento na precisão da consulta e a menor aumento na precisão da classificação. Além disso, as técnicas propostas têm custo computacional linear, enquanto o PCA tem um custo computacional cúbico. Os resultados indicam que os métodos propostos são abordagens adequadas para realizar pré-processamento dos vetores de características de imagens em sistemas CBIR e em sistemas de classificação.
7

"Recuperação de imagens por conteúdo através de análise multiresolução por Wavelets" / "Content based image retrieval through multiresolution wavelet analysis

Cesar Armando Beltran Castañon 28 February 2003 (has links)
Os sistemas de recuperação de imagens por conteúdo (CBIR -Content-based Image Retrieval) possuem a habilidade de retornar imagens utilizando como chave de busca outras imagens. Considerando uma imagem de consulta, o foco de um sistema CBIR é pesquisar no banco de dados as "n" imagens mais similares à imagem de consulta de acordo com um critério dado. Este trabalho de pesquisa foi direcionado na geração de vetores de características para um sistema CBIR considerando bancos de imagens médicas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica sucinta de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor "n"-dimensional contendo esses valores. Essa nova representação da imagem pode ser armazenada em uma base de dados, e assim, agilizar o processo de recuperação de imagens. Uma abordagem alternativa para caracterizar imagens para um sistema CBIR é a transformação do domínio. A principal vantagem de uma transformação é sua efetiva caracterização das propriedades locais da imagem. Recentemente, pesquisadores das áreas de matemática aplicada e de processamento de sinais desenvolveram técnicas práticas de "wavelet" para a representação multiescala e análise de sinais. Estas novas ferramentas diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente, elas têm a capacidade de mudar de uma resolução para outra, o que faz delas especialmente adequadas para a análise de sinais não estacionários. A transformada "wavelet" consiste de um conjunto de funções base que representa o sinal em diferentes bandas de freqüência, cada uma com resoluções distintas correspondentes a cada escala. Estas foram aplicadas com sucesso na compressão, melhoria, análise, classificação, caracterização e recuperação de imagens. Uma das áreas beneficiadas, onde essas propriedades têm encontrado grande relevância, é a área médica, através da representação e descrição de imagens médicas. Este trabalho descreve uma abordagem para um banco de imagens médicas, que é orientada à extração de características para um sistema CBIR baseada na decomposição multiresolução de "wavelets" utilizando os filtros de Daubechies e Gabor. Essas novas características de imagens foram também testadas utilizando uma estrutura de indexação métrica "Slim-tree". Assim, pode-se aumentar o alcance semântico do sistema cbPACS (Content-Based Picture Archiving and Comunication Systems), atualmente em desenvolvimento conjunto entre o Grupo de Bases de Dados e Imagens do ICMC--USP e o Centro de Ciências de Imagens e Física Médica do Hospital das Clínicas de Riberão Preto-USP. / Content-based image retrieval (CBIR) refers to the ability to retrieve images on the basis of the image content. Given a query image, the goal of a CBIR system is to search the database and return the "n" most similar (close) ones to the query image according to a given criteria. Our research addresses the generation of feature vectors of a CBIR system for medical image databases. A feature vector is a numeric representation of an image or part of it over its representative aspects. The feature vector is a "n"-dimensional vector organizing such values. This new image representation can be stored into a database and allow a fast image retrieval. An alternative for image characterization for a CBIR system is the domain transform. The principal advantage of a transform is its effective characterization for their local image properties. In the past few years, researches in applied mathematics and signal processing have developed practical "wavelet" methods for the multiscale representation and analysis of signals. These new tools differ from the traditional Fourier techniques by the way in which they localize the information in the time-frequency plane; in particular, they are capable of trading one type of resolution for the other, which makes them especially suitable for the analysis of non-stationary signals. The "wavelet" transform is a set of basis functions that represents signals in different frequency bands, each one with a resolution matching its scale. They have been successfully applied to image compression, enhancements, analysis, classifications, characterization and retrieval. One privileged area of application where these properties have been found to be relevant is medical imaging. In this work we describe an approach to CBIR for medical image databases focused on feature extraction based on multiresolution "wavelets" decomposition, taking advantage of the Daubechies and Gabor. Fundamental to our approach is how images are characterized, such that the retrieval procedure can bring similar images within the domain of interest, using a metric structure indexing, like the "Slim-tree". Thus, it increased the semantic capability of the cbPACS(Content-Based Picture Archiving and Comunication Systems), currently in joined developing between the Database and Image Group of the ICMC--USP and the Science Center for Images and Physical Medic of the Clinics Hospital of Riberão Preto--USP.
8

Proposta de um histograma perceptual de cores como característica para recuperação de imagens baseada em conteúdo / Proposal of a perception color histogram as characteristic for content-based image retrieval

Silva, Katia Veloso 14 September 2006 (has links)
Este trabalho foi desenvolvido com o intuito de se estabelecer uma metodologia para a classificação das cores de imagens digitais em cores perceptuais para se gerar um vetor de características que permita recuperar imagens através de seu conteúdo em uma base de dados. Em trabalhos e estudos correlatos analisados, as metodologias de agrupamento das diversas cores possíveis de uma imagem não permitem uma associação entre a cor digitalizada e a cor percebida por seres humanos. Estudos mostram que a maioria das culturas humanas associam às cores apenas onze termos: vermelho, amarelo, violeta, azul, verde, rosa, marrom, preto, branco, laranja e cinza. Este trabalho propõe, portanto, uma metodologia baseada em regras da lógica fuzzy, que permite associar a todas as possíveis cores de imagens digitais uma das onze cores culturais definidas, criando assim um histograma perceptual de cores. Isso permitiu a geração de um vetor de características para a recuperação de imagens baseada em conteúdo em uma base de dados. / This work aims at establishing a digital image classification methodology based on perceptual colors, by generating a feature vector that allows retrieving images from a database by their content. In related works the methodologies of grouping the diverse possible colors of an image do not allow associate digitized colors and those colors perceived by human beings. Studies show that the majority of human being culture associates only eleven terms to all the possible colors: red, yellow, blue, green, pink, brown, black, white, purple, orange and gray. This work purpose a methodology based on fuzzy logic that allows to associate the eleven cultural color terms with all of digitized colors by a perceptual color histogram. The image color quantization generates a feature vector used for content-based image retrieval. The results show that it is possible to use the perceptual color histogram for CBIR and in the semantic gap reduction.
9

Proposta de um histograma perceptual de cores como característica para recuperação de imagens baseada em conteúdo / Proposal of a perception color histogram as characteristic for content-based image retrieval

Katia Veloso Silva 14 September 2006 (has links)
Este trabalho foi desenvolvido com o intuito de se estabelecer uma metodologia para a classificação das cores de imagens digitais em cores perceptuais para se gerar um vetor de características que permita recuperar imagens através de seu conteúdo em uma base de dados. Em trabalhos e estudos correlatos analisados, as metodologias de agrupamento das diversas cores possíveis de uma imagem não permitem uma associação entre a cor digitalizada e a cor percebida por seres humanos. Estudos mostram que a maioria das culturas humanas associam às cores apenas onze termos: vermelho, amarelo, violeta, azul, verde, rosa, marrom, preto, branco, laranja e cinza. Este trabalho propõe, portanto, uma metodologia baseada em regras da lógica fuzzy, que permite associar a todas as possíveis cores de imagens digitais uma das onze cores culturais definidas, criando assim um histograma perceptual de cores. Isso permitiu a geração de um vetor de características para a recuperação de imagens baseada em conteúdo em uma base de dados. / This work aims at establishing a digital image classification methodology based on perceptual colors, by generating a feature vector that allows retrieving images from a database by their content. In related works the methodologies of grouping the diverse possible colors of an image do not allow associate digitized colors and those colors perceived by human beings. Studies show that the majority of human being culture associates only eleven terms to all the possible colors: red, yellow, blue, green, pink, brown, black, white, purple, orange and gray. This work purpose a methodology based on fuzzy logic that allows to associate the eleven cultural color terms with all of digitized colors by a perceptual color histogram. The image color quantization generates a feature vector used for content-based image retrieval. The results show that it is possible to use the perceptual color histogram for CBIR and in the semantic gap reduction.

Page generated in 0.1059 seconds