Spelling suggestions: "subject:"vinculin"" "subject:"vinculina""
11 |
The function and regulation of vinculin in cell-cell adhesionsPeng, Xiao 01 May 2011 (has links)
Adherens junctions are essential for embryogenesis and tissue homeostasis. The major transmembrane adhesion receptors in adherens junctions are the cadherins, which mediate cell-cell adhesion by binding to cadherins on adjacent cells. Cadherin function is regulated by the protein complexes that assemble at its cytoplasmic tail. Vinculin is one cytoplasmic component of the cadherin adhesion complex, but unlike other junction components, it also is enriched in cell-matrix adhesions. The presence of vinculin in cellmatrix adhesions has commanded the most attention, while little is known about its role in cell-cell adhesions.
To define the role of vinculin in adherens junctions, I established a short hairpin RNA-based knockdown/substitution system that perturbs vinculin preferentially at sites of cell-cell adhesion. When this system was applied to epithelial cells, cell morphology was altered, and cell-cell adhesion was reduced owing to a lack of cadherin on the cell surface. I investigated the mechanism for this effect and found that vinculin must bind to beta-catenin to regulate E-cadherin surface expression.
Having established a role for vinculin in cell-cell adhesions, the critical question became how vinculin recruitment to and activation at cell-cell junctions are regulated. I found that á-catenin triggers activating vinculin conformational changes. Unlike all of the known vinculin activators in cell-matrix adhesions, alpha-catenin binds and activates vinculin independently of an A50I substitution. Thus, adherens junction activators and cell-matrix activators bind to distinct regions of vinculin to activate this molecule. Using mutant vinculins that cannot be tyrosine phosphorylated, I found that vinculin recruitment to cell-cell adhesions, but not cell-matrix adhesions, requires phosphorylation at Y822. Furthermore, this residue is phosphorylated by Abl tyrosine kinases during the assembly
of cell-cell adhesions. Taken together, these studies explain how vinculin is differentially recruited to adherens junctions and cell-matrix adhesions and describes the first known role for vinculin at cell-cell adhesions.
|
12 |
AFAP1L1, a novel associating partner with vinculin, modulates cellular morphology and motility, and promotes the progression of colorectal cancers. / ビンキュリンの新規相互作用因子 AFAP1L1は細胞形態及び遊走能を変化させ、大腸癌進展を促進するTakahashi, Ryo 23 July 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18502号 / 医博第3922号 / 新制||医||1005(附属図書館) / 31388 / 京都大学大学院医学研究科医学専攻 / (主査)教授 武藤 学, 教授 千葉 勉, 教授 松田 道行 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
13 |
Investigating conformational changes of proteins using Förster Resonance Energy TransferBalloi, Eleonora January 2015 (has links)
Förster Resonance Energy Transfer (FRET)-based techniques are gaining an increasing importance in cell biology and cell-matrix adhesion studies because they allow both the detection of conformational changes of target proteins and their localisation in cells. Frequency Domain-Fluorescence Lifetime Microscopy (FD-FLIM) is currently considered one of the most reliable methods to measure FRET in live cells. However, due to its dependence on many technical prerequisites, its use is not yet widespread. The purpose of this work was to first establish FD-FLIM measurements of FRET on a new FD-FLIM microscope module. Then we aimed to apply FD-FLIM-FRET measurements to the study of conformational changes of the cell matrix-adhesion proteins vinculin and integrin and of the growth factor receptor Tie-2. In the first part of the work, published FRET probes including distance-sensors and two sets of vinculin-based probes were extensively tested with FD-FLIM, sensitised emission and ratiometric FRET. FD-FLIM was shown to be the most accurate method in approximating molecular distances between fluorophores. Moreover this study unveiled specific caveats associated with both existing vinculin FRET probes. FD-FLIM was then used to study conformational changes of the extracellular matrix receptor alphavβ3 integrin and of the angiopoietin receptor Tie-2 using specific FRET probes designed by us. While data showed that the alphav-integrin-FRET probe localised to adhesion sites, more experiments will be required to evaluate its full functionality. The Tie-2-FRET probe was fully functional and, upon ligand binding, allowed the detection of a bending movement of the extracellular domain towards the cell membrane. Finally, a combination of FRET, immunofluorescence and tension release experiments were used to show that intracellular tension is not required to maintain integrins in their activated conformation. However, intracellular tension is required to recruit other key proteins such as vinculin, talin and tensin to adhesions sites. Overall this work demonstrates the importance of FD-FLIM-FRET as a tool to investigate conformational changes of adhesion proteins and transmembrane receptors within the cell environment.
|
14 |
Gene Therapy with Interferon Alpha and the Angiogenic Inhibitor, Vasostatin, in Neuroendocrine Tumors of the Digestive SystemLiu, Minghui January 2007 (has links)
IFN-α has been applied in medical treatment of various neuroendocrine (NE) tumors, either alone or combination with somatostatin analogues. They can improve clinical symptoms in 50-70% of patients but a significant tumor reduction is only observed in 5-15% patients. Vasostatin (vaso) is believed to be an angiogenic inhibitor. The aim of this study is to evaluate the feasibility to use IFN-α and vasostatin gene therapy in NE tumors. We constructed plasmid vectors carrying human IFN-α2 (hIFN-α2) gene and human vasostatin gene, which were transfected into BON I cell to obtain stable gene-expressing cell lines. We found that in animal tumor model and cell experiments gene transfer of vasostatin caused a faster cell growth and tumor development via down-regulation of the tumor suppressor gene and p27. Cell adhesion, spreading, migration and invasion ability were increased in vaso-expressing BON I cells. Transfecting chicken vinculin could reverse the malignant behavior and restored expression of tumor suppressor genes. Moreover, vinculin knockdown could result in a faster cell growth and an increased colony formation. Condition medium taken from hIFN-α2-expressing BON I cells showed significant antiproliferative effects both on the NE tumor cells, BON I and LCC18, and the endothelial cells, PAE. It also suppressed cell adhesion and cell invasion and inhibited angiogenesis on CAM assay. Mice implanted with a mixture of WT BON cells and hIFN-α2-expressing BON cells (1:1) demonstrated significantly lower tumor incidence and longer tumor doubling time. Furthermore, long-acting IFN-α2b (PEGIntron®) demonstrated a better anti-tumor effect in contrast with IFN-α2b (IntronA®). Intratumoral injection of hIFN-α2 plasmids significantly inhibited NE tumor growth and caused tumor regression. We concluded that gene transfer of vasostatin into BON I cells might cause an enhanced malignant tumor behavior. Therefore, vasostatin therapy can not be recommended for patients with NE tumors. Vinculin might play an important role in NE tumor development and growth regulation. Gene therapy by using plasmid DNA carrying hIFN-α2 gene is feasible and promising in NE tumors.
|
15 |
Diverse functions for intern associated proteins in Drosophila adult muscleGreen, Hannah Jane January 2017 (has links)
The ability to adhere to the extracellular matrix (ECM) is critical for numerous cell types and tissues including epithelia and muscle. Cell-ECM adhesion is primarily mediated by integrins which provide a direct link between the ECM and the actin cytoskeleton. Integrin adhesions are frequently associated with a core of 60 different proteins (integrin-associated proteins, IAPs). Integrins are required for muscle attachment and in Drosophila, loss of integrins and several IAPs results in embryonic lethality and muscle detachment. However, the IAPs FAK, RSU1, tensin, vinculin and zyxin are not required for viability or embryonic muscle attachment. Furthermore, FAK, RSU1, tensin and vinculin have been observed to localise to muscle attachment sites in Drosophila, indicating that they have some function in muscle attachment. Unlike FAK, RSU1, tensin and vinculin, it was not previously known whether zyxin is expressed in Drosophila muscles. To test this, I generated a genomic zyxin-GFP construct that should contain most of the endogenous zyxin promotor. The genomic zyxin-GFP construct was not observed at muscle attachment sites, suggesting that it is not normally expressed in muscle. I wished to know whether FAK, RSU1, tensin and vinculin are required for muscle function. Various behavioural assays were employed to test for muscle function in larvae and adult flies. The results suggest that larval muscle function was normal in flies lacking these IAPs, but that adult muscle function might be impaired, although it proved difficult to demonstrate a clear functional defect. I then tested whether the IAPs FAK, RSU1, tensin and vinculin are required for normal morphology of adult muscles, focusing on the adult indirect flight muscles (IFMs). The IFMs are fibrillar muscles which attach to the cuticle via specialised epithelial cells known as tendon cells. At the end of the myofibril, where the myofibril attaches to the tendon cell, is a dense region of actin and IAPs known as the modified terminal Z-band (MTZ). I have found that the MTZ is not a homogenous zone of proteins, but is instead organised into at least three distinct layers. Because of the similarity between the structure of the MTZ with that of a hand, I refer to the layers as ‘fingers’, ‘palm’ and ‘wrist’. I discovered that the IAPs FAK, RSU1, tensin and vinculin are each required for the proper structure of the MTZ in unique ways. The fingers were elongated in IFMs lacking FAK, RSU1, tensin or vinculin, while the palm was disrupted in IFMs lacking RSU1, tensin or vinculin. Finally, I was intrigued by the enrichment of the actin-binding protein filamin/Cheerio in the palm and wished to know if it is required for palm function. Deletion of the C-terminus of filamin/Cheerio resulted in a reduction in palm length. Filamin/Cheerio is a mechanosensitive protein which exists in a closed and open conformation. I found that filamin/Cheerio must be open in order to help form a normal palm. Furthermore, vinculin is required to convert filamin/Cheerio from and closed to an open filamin/Cheerio state so that it can perform its function in the palm.
|
16 |
Regulation of cell-cell adhesion and actin cytoskeleton in non-transformed and transformed epithelial cellsPalovuori, R. (Riitta) 21 February 2003 (has links)
Abstract
Epithelial cell-cell adhesions have a critical role in morphogenesis, establishment and maintenance of tissue architecture, cell-cell communication, normal cell growth and differentiation. These adhesions are disrupted during malignant transformation and tumour cell invasion. Several kinases, phosphatases and small GTPases regulate cell-cell contacts. In the present work we investigated the dynamics of cell-cell adhesion structures after microinjection of fluorophore tagged vinculin, during transformation caused by an active Src tyrosine kinase and during Helicobacter pylori infection. The regulatory role of Rac GTPase as well as the behaviour of actin and cadherin were analysed in all these conditions.
Microinjection of vinculin into bovine kidney epithelial MDBK cells induced release of actin, cadherin and plakoglobin to cytoplasm of the cells, caused disruption of protein complexes at adherens and tight junctions that finally led to formation of polykaryons. Activated Rac GTPase, in turn, enhanced accumulation of cadherin to membranes and thereby diminished the formation of polykaryons, whereas inactive Rac removed cadherin from membranes. Incorporation of vinculin to lateral membranes took place also in acidifying and depolarising conditions where cell fusions were prevented. Thus, the membrane potential seemed to control fusion ability. In src-MDCK cells, activation of Src kinase led to disintegration of adherens junctions. Clusters of junctional components and bundles of actin were seen at the basal surface already within 30 min after Src activation. p120ctn was the only component of adherens junction whose relocation correlated to its phosphorylation. Inhibition of Src by a specific inhibitor PP2 restored the cubic morphology of the cells and accumulated cadherin back to lateral walls. Still p120ctn remained in cytoplasm and thereby was not responsible for the epithelial phenotype. Activation of Rac GTPase by Tiam1 also increased the amount of cadherin at lateral membranes and maintained the morphology of src-MDCK cells practically normal after activation of Src kinase. In the same way, actin cytoskeleton was reorganised in gastric carcinoma cells in response to infection with H. pylori via activation of Rac signalling pathway. Hence, Rac and cadherin seem to be the major players in the maintenance of epithelial cell morphology.
|
17 |
Flow Cytometric Analysis of Isolated Adult Cardiomyocytes: Vinculin and Tubulin Fluorescence During Metabolic Inhibition and IschemiaArmstrong, Stephen C., Ganote, Charles E. 01 January 1992 (has links)
Immunofluorescence and quantitative flow cytometry was used to determine if alterations in cytoskeletal proteins (vinculin and tubulin) occur during metabolic inhibition and ischemic incubation of isolated adult rat cardiomyocytes. Effects of cell shape changes on fluorescence, were controlled for by the contractile inhibitor, butanedione monoxime (BDM) and gated analysis. Flow cytometry differentiated rod- and round-shaped myocytes on the basis of forward and side scattering. Severe contracture of metabolically inhibited (iodoacetic acid and amytal) myocytes caused an artefactual increase in fluorescence intensity and a redistribution of tubulin into microblebs on the cell surface, which tended to mask specific losses of fluorescence. Fluorescence microscopy showed that round cells stained intensely for vinculin, but not for tubulin and that vinculin redistributed into coarse patches between 60 and 90 min, times which corresponded to small rebounds of fluorescence. With gated analysis, to exclude severely contracted round and squared cells, and with BDM inhibition of contracture, both metabolically inhibited and ischemic pelleted myocytes showed an early decrease in specific immunofluorescence staining for tubulin and vinculin, which preceded loss of cell viability, as determined by trypan blue staining. In both ischemic and metabolically inhibited cells, decreases of vinculin fluorescence preceded or coincided with increasing osmotic fragility. It is concluded that early cytoskeletal alterations of vinculin in ischemic and anoxic injury correlate with the development of osmotic fragility and irreversible myocyte injury.
|
18 |
Conformational Changes Of Vinculin Tail Upon F-Actin And Phospholipid Binding Studied By EPR SpectroscopyAbé, Christoph 29 June 2010 (has links)
The cytoskeletal protein vinculin plays a key role in the control of cell-cell or cell-matrix adhesions. It is involved in the assembly and disassembly of focal adhesions and affects their mechanical stability. While many facts highlight the importance and significance of vinculin for vital processes, its precise role in the regulation of cell adhesions is still only partially understood. Various EPR methods are used in this work in order to study the vinculin tail (Vt) domain in an aqueous buffer solution and its structural changes induced by F-actin and acidic phospholipids. EPR results in combination with a rotamer library approach (RLA), MD simulation and other computational methods allowed the construction of molecular models of Vt and dimeric Vt in the presence and absence of its binding partners. Furthermore, X-band orientation selective DEER measurements were applied on a Vt double mutant. It could be shown that the determination of the mutual orientation of protein bound spin labels is possible at X-band frequencies, if the orientation correlation of the spin label pair is strong. The method established here can be used to determine valuable information about proteins and nucleic acids, expanding the virtue of DEER spectroscopy as a tool for structure determination.
|
19 |
Role of TRIP6 and Angiomotins in the Regulation of the Hippo Signaling PathwayDutta, Shubham 16 March 2018 (has links)
Mechanical tension is an important regulator of cell proliferation, differentiation, migration and cell death. It is involved in the control of tissue architecture and wound repair and its improper sensing can contribute to cancer. The Hippo tumor suppressor pathway was recently shown to be involved in regulating cell proliferation in response to mechanical tension. The core of the pathway consists of the kinases MST1/2 and LATS1/2, which regulate the target of the pathway, the transcription co-activator YAP/ TAZ (hereafter referred to as YAP). When the Hippo pathway is inactive, YAP remains in the nucleus and promotes cell proliferation and stem cell maintenance. When the Hippo signaling pathway is turned on, MST1/2 phosphorylate and activates LATS1/2. LATS1/2 phosphorylates and inactivates YAP in the cytoplasm which is sequestered and degraded, stopping cell proliferation and promoting differentiation of stem cells. Mechanical forces are transmitted across cells and tissues through the cell-cell junctions and the actin cytoskeleton. However, the factors that connect cell-cell junctions to the Hippo signaling pathway were not clearly known. We identified a LIM domain protein called TRIP6 that functions at the adherens junctions to regulate the Hippo signaling pathway in a tension-dependent manner. TRIP6 responds to mechanical tension at adherens junctions and regulates LATS1/2 activity. Under high mechanical tension, TRIP6 sequesters and inhibits LATS1/2 at adherens junctions to promote YAP activity. Conditions that reduce tension at adherens junctions by inhibition of actin stress fibers or disruption of cell-cell junctions reduce TRIP6-LATS1/2 binding, which activates LATS1/2 to inhibit YAP. Vinculin has been shown to act as part of a mechanosensory complex at adherens junctions. We show that vinculin promotes TRIP6 inhibition of LATS1/2 in response to mechanical tension. Furthermore, we show that TRIP6 competitively inhibits MOB1 (a known LATS1/2 activator) from binding and activating LATS1/2. Together these findings reveal TRIP6 responds to mechanical signals at adherens junctions to regulate the Hippo signaling pathway in mammalian cells.
|
20 |
Development of a novel liquid crystal based cell traction force transducer systemSoon, Chin Fhong, Youseffi, Mansour, Berends, Rebecca F., Blagden, Nicholas, Denyer, Morgan C.T. January 2013 (has links)
No / Keratinocyte traction forces play a crucial role in wound healing. The aim of this study was to develop a novel cell traction force (CTF) transducer system based on cholesteryl ester liquid crystals (LC). Keratinocytes cultured on LC induced linear and isolated deformation lines in the LC surface. As suggested by the fluorescence staining, the deformation lines appeared to correlate with the forces generated by the contraction of circumferential actin filaments which were transmitted to the LC surface via the focal adhesions. Due to the linear viscoelastic behavior of the LC, Hooke's equation was used to quantify the CTFs by associating Young's modulus of LC to the cell induced stresses and biaxial strain in forming the LC deformation. Young's modulus of the LC was profiled by using spherical indentation and determined at approximately 87.1+/-17.2kPa. A new technique involving cytochalasin-B treatment was used to disrupt the intracellular force generating actin fibers, and consequently the biaxial strain in the LC induced by the cells was determined. Due to the improved sensitivity and spatial resolution ( approximately 1mum) of the LC based CTF transducer, a wide range of CTFs was determined (10-120nN). These were found to be linearly proportional to the length of the deformations. The linear relationship of CTF-deformations was then applied in a bespoke CTF mapping software to estimate CTFs and to map CTF fields. The generated CTF map highlighted distinct distributions and different magnitude of CTFs were revealed for polarized and non-polarized keratinocytes.
|
Page generated in 0.0473 seconds