• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 10
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 19
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Degradation of Vinyl Chloride and 1,2-Dichloroethane by Advanced Reduction Processes

Liu, Xu 16 December 2013 (has links)
A new treatment technology, called Advanced Reduction Process (ARP), was developed by combining UV irradiation with reducing reagents to produce highly reactive species that degrade contaminants rapidly. Vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) pose threats to humans and the environment due to their high toxicity and carcinogenicity. In this study, batch experiments were conducted under anaerobic conditions to investigate the degradations of VC and 1,2-DCA with various ARP that combined UV with dithionite, sulfite, sulfide or ferrous iron. Complete degradation of both target compounds was achieved by all ARP and the reactions were found to follow pseudo-first-order decay kinetics. The effects of pH, sulfite dose, UV light intensity and initial contaminant concentration on the degradation kinetics were investigated in the photochemical degradation of VC and 1,2-DCA by the sulfite/UV ARP. The rate constants were generally promoted by raising the solution pH. The optimal pH conditions for VC and 1,2-DCA degradation were pH 9 and pH 11,respectively. Higher sulfite dose and light intensity were found to increase the rate constants linearly for both target contaminants. A near reciprocal relation between the rate constant and initial concentration of target compounds was observed in the degradation of 1,2-DCA. The rate constant was observed to be generally independent of VC concentration, but with a slight increase at lower concentrations. A degradation mechanism was proposed that described reactions between target contaminants and reactive species such as the sulfite radical and hydrated electron that were produced in the photolysis of sulfite solution. A mechanistic model that described major reactions in the ARP system was developed and explained the dependence of the rate constant on those experimental factors. Chloride ion and chloroethane were detected as the major degradation products at acid and neutral pH. An increase in pH promoted the extent of dechlorination with complete dechlorination being observed at pH 11 for both VC and 1,2-DCA. Due to the rapid degradation kinetics in these ARPs, this new treatment technology may be applied to remove various contaminants in water and wastewater.
22

Proteomic investigations of vinyl chloride-assimilating bacteria: from pure cultures to the environment

Chuang, Adina Shiang 01 December 2009 (has links)
Vinyl chloride (VC) is a common groundwater pollutant and known human carcinogen that is commonly produced from the incomplete reductive dechlorination of tetrachloroethene and trichloroethene, chlorinated solvents often used in plastics and dry cleaning solvent manufacturing. The treatment of VC-contaminated sites by bacteria that can biodegrade VC has been demonstrated to be a practical and potentially cost-effective alternative to traditional "pump and treat" site cleanup options. However, little is known about the biochemical pathways involved in VC-assimilation within these strains and their distribution and activity in situ in the environment. This work uses mass-spectrometry-based proteomics to contribute to the understanding of these microbial communities in both pure cultures and in the environment. The biochemical pathways of VC and ethene oxidation in Nocardioides sp. strain JS614 were studied using proteins identified with a peptide mass fingerprinting approach. New insights into a previously proposed pathway were made using mass spectrometry (MS)-based protein identifications, and potential protein biomarkers for the presence and activity of VC-assimilating bacteria in the environment were identified. Techniques to extract proteins from various environmental samples such as activated sludge, sediments, soils, and water samples were developed based on preliminary experiments with protein extraction from strain JS614. The results of these studies demonstrated the successful extraction and identification of proteins involved in VC-assimilation from ethene-enriched groundwater samples. The presence and diversity of VC-assimilating bacteria in several ethene-enriched groundwater samples were examined using tandem mass spectrometry analysis to identify the protein biomarkers EtnC and EtnE. VC-assimilating organisms can evolve in vitro from bacteria that grow on ethene but very little is known about the molecular changes involved. Proteomic investigations comparing three strains of Mycobacterium strain JS623, a wild type and two VC-adapted strains, validated previous studies indicating that protein expression changes are involved in VC-adaptation. Tandem mass spectrometry and spectral counting were used to identify proteins and semi-quantitatively estimate protein expression levels in the three ethene-grown JS623 variants. The results of this study suggest that multiple VC-adaptation mechanisms are involved in the two VC-adapted strains
23

A Novel Amendment Delivery System for Groundwater Impacted by Vinyl Chloride

Ryter, Erika Anne January 2006 (has links)
<p> Although successful in laboratory studies, field applications of in situ remediation of chlorinated solvents in groundwater have met with limited success. This is most often attributed to the inability to deliver the amendment evenly throughout the target zone, especially in low permeability and heterogeneous materials. The goal of this research was to employ a prototype of a novel delivery system to evenly deliver amendment across the depth and breadth of the subsurface in a cost-effective method. The research was conducted at 42 Voyager Court, Toronto, ON where concentrations of vinyl chloride in groundwater were in excess of Ontario Ministry of the Environment guidelines (O.Reg.153/04). The subsurface consisted of sandy and clayey silt fill underlain by sandy silt till.</p> <p> The delivery system comprised 29, 1/4" diameter, delivery points with small perforations along the length, installed in a fence perpendicular to groundwater flow, approximately 0.5 m upgradient of the area of concern. The delivery system used low flow rates (approximately 13 to 23% of total groundwater flow) and discrete delivery holes to deliver a potassium permanganate solution (approximately 40 g/L) amended with sodium bromide (approximately 0.8 g/L) across the depth of the subsurface. Fourteen multi-level monitoring wells, each with five sampling ports were installed to monitor the effectiveness.</p> <p> After six months of delivery, sample results indicated that oxidant demand hindered the ability of potassium permanganate to reach and degrade the vinyl chloride. However, elevated bromide concentrations were detected at all downgradient sampling ports within a 1.5 m distance. Thus, the delivery system was successful at delivering the amendment across the depth and breadth of the target area and achieving even delivery.</p> <p> Problems, typically leaks, were encountered with the delivery system design. Additional engineering would be required to improve the header system prior to commercializing this process. This would be a beneficial endeavor, as results of this work indicate that this passive delivery fence technique meets a real need in the remediation industry, which is the even distribution of amendment to target zones in the saturated subsurface, including zones of low permeability.</p> / Thesis / Master of Applied Science (MASc)
24

Influência dos plastificantes alternativos ao dioctil ftalato nas propriedades de compostos de poli (cloreto de vinila)

Mattana, Mônica January 2017 (has links)
O poli(cloreto de vinila) - PVC é considerado um polímero muito versátil devido à possibilidade deste ser formulado mediante a incorporação de aditivos, alterando suas características originais. Plastificantes a base de ftalatos, como o di(2-etilhexil) ftalato (DOP) são os mais utilizados, porém, existem regulamentações que estão restringindo a sua utilização, intensificando-se os estudos com possíveis alternativos. Desta forma, este trabalho visa avaliar a influência de plastificantes de diferentes naturezas nas propriedades físicas, mecânicas, térmicas e reológicas do PVC plastificado. Para formulação dos compostos foi utilizado a resina Norvic SP1000 produzida via suspensão, com VK65 e portanto, propícia para aplicações de materiais flexíveis, além disso, para cada composto utilizou-se uma dosagem de 60 pcr de sete diferentes plastificantes: DOP, considerado como referência para comparação dos resultados, diisononil ciclohexano (DINCH), di(2-etilhexil) ciclohexanoato (DOCH), di(2-etilhexil) adipato (DOA), di(2-etilhexil) tereftalato (DOTP), óleo de soja epoxidado (OSE) e plastificante de óleos vegetais (DIMIT) Neste estudo foram efetuadas avaliações nos compostos como, gelificação e fusão, reologia via reômetro de placas paralelas, densidade, índice de fluidez entre outras para compreender a influência de cada plastificante no processamento do composto e várias caracterizações no produto final como estabilidade térmica dos compostos via TGA, Metrastat, propriedades óticas, propriedades mecânicas como dureza Shore A, tração, resistência a abrasão, resiliência, envelhecimento em câmara UV assim como ensaios de exsudação dos plastificantes. Os resultados indicam comportamentos distintos do PVC em função da natureza química do plastificante utilizado. O plastificante DIMIT possui boa estabilidade térmica, porém os resultados de cor e parâmetros de processamento foram insatisfatórios quando comparados ao DOP, já os plastificantes OSE e DOA apresentaram bons resultados para as propriedades avaliadas. Conclui-se que dentre os plastificantes analisados não foi possível determinar qual seria o melhor para substituição direta do DOP considerando toda a gama de produtos flexíveis de PVC, contudo esse trabalho colabora para a avaliação e seleção do melhor plastificante com base nos requisitos de cada aplicação do produto. / The poly (vinyl chloride) - PVC is a very versatile polymer due to the possibility of being formulated by incorporating additives, which can change the resin characteristics. Plasticizers composed of phthalates, such as di(2-ethylhexyl) phthalate (DOP), are the most used, however, there are regulations restricting the use of this kind of plasticizers, intensifying studies with possible replacement alternatives. In this way, the objective of this work is to evaluate the influence of plasticizers from different sources in PVC, mainly physical, mechanical thermal stability, and rheological properties in the plasticized PVC. In the formulation of the compounds it was used the resin Norvic SP1000, product with VK65 and produced by suspension, suitable for flexible materials applications. In addition, it was used 60 phr of seven different plasticizers for each compound: DOP, considered as reference for all results, cyclohexane diisononyl (DINCH), di(2-ethylhexyl) cyclohexanoate (DOCH), di(2-ethylhexyl) adipate (DOA), di(2-ethylhexyl) terephthalate (DOTP), epoxidized soybean oil (OSE) and plasticizer produced from vegetable oils (DIMIT). In this study, the compounds were evaluated with many characterization analyzes, such as gelling and melting point in a torque rheometer, rheology by parallel plate rheometer, density, melt flow index in order to understand the influence of each plasticizer on the material processing Some characterizations in the final product as thermal stability through TGA, Metrastat, optical and mechanical properties such as hardness Shore A, tensile strength, abrasion resistance, resilience, aging in UV chamber as well as exudation tests. The results indicate different behaviors of PVC depending on the chemical nature of the plasticizer used. Results indicate that the DIMIT plasticizer had good thermal stability, but the color and processability results were unsatisfactory when compared to the DOP. In the other hand, the OSE and DOA presented good results for the evaluated properties. It can be concluded that among the plasticizers analyzed it wasn´t possible to determine the best for direct DOP replacement considering the entire range of flexible PVC products. However, this work contributes to the evaluation and selection of the best plasticizer based on the requirements of each application.
25

Compósitos de PVC reforçados com fibra de vidro: uso de técnicas de processamento convencionais da indústria brasileira. / Glass fiber reinforced PVC composites: use of conventional processing techniques currently employed in the Brazilian industry.

Murilo de Barros Feltran 15 February 2008 (has links)
Este trabalho apresenta o estudo da incorporação de fibra de vidro curta em composto rígido de poli(cloreto de vinila) - PVC - por meio de equipamentos e técnicas de processamento convencionais da indústria brasileira. Foram avaliadas as influências de: a) tamanho de fibra de vidro (tipo E), b) dosagem de fibra de vidro, c) dosagem de dióxido de titânio (TiO2) e d) a temperatura de processamento nas propriedades físicas, térmicas, mecânicas e na adesão entre matriz polimérica e fibra de vidro (analisada por Microscopia Eletrônica de Varredura). O custo-benefício dos compósitos foi calculado por meio de Índices de Mérito para os modos de carregamento mecânico encontrados nos tubos pressurizados para água fria (Cilindro com Pressão Interna) e perfis rígidos utilizados em construção civil (Barra em Flexão), dado o grande uso de PVC nestas aplicações. Entre os resultados obtidos, destaca-se o aumento de 45% no módulo de elasticidade para os compósitos com 20% de fibra de vidro moída que, para algumas aplicações, pode apresentar uma relação custo-benefício bastante favorável. / This work presents the impact of the short glass fiber incorporation in rigid PVC compound through conventional processing techniques currently employed in the Brazilian industry. It were studied the influences of a) glass fiber geometry (E type), b) glass fiber content, c) titanium dioxide content and d) processing temperature in the physical, mechanical and thermal properties. The adhesion conditions between polymeric matrix and glass fiber was analyzed by scanning electron microscopy (SEM). Cost-benefit relation of composites was evaluated using materials index technique for mechanical conditions found in pressurized water pipes (cylinder with internal pressure) and in building construction profiles (beam loaded in bending). The results attained suggested that, in some cases, the mechanical properties enhancement (such as the increase of 45% in the modulus of elasticity for composites containing 20% of glass fiber) and the processing techniques required to produce it can present an interesting cost-benefit relation.
26

Compósitos de PVC reforçados com fibra de vidro: uso de técnicas de processamento convencionais da indústria brasileira. / Glass fiber reinforced PVC composites: use of conventional processing techniques currently employed in the Brazilian industry.

Feltran, Murilo de Barros 15 February 2008 (has links)
Este trabalho apresenta o estudo da incorporação de fibra de vidro curta em composto rígido de poli(cloreto de vinila) - PVC - por meio de equipamentos e técnicas de processamento convencionais da indústria brasileira. Foram avaliadas as influências de: a) tamanho de fibra de vidro (tipo E), b) dosagem de fibra de vidro, c) dosagem de dióxido de titânio (TiO2) e d) a temperatura de processamento nas propriedades físicas, térmicas, mecânicas e na adesão entre matriz polimérica e fibra de vidro (analisada por Microscopia Eletrônica de Varredura). O custo-benefício dos compósitos foi calculado por meio de Índices de Mérito para os modos de carregamento mecânico encontrados nos tubos pressurizados para água fria (Cilindro com Pressão Interna) e perfis rígidos utilizados em construção civil (Barra em Flexão), dado o grande uso de PVC nestas aplicações. Entre os resultados obtidos, destaca-se o aumento de 45% no módulo de elasticidade para os compósitos com 20% de fibra de vidro moída que, para algumas aplicações, pode apresentar uma relação custo-benefício bastante favorável. / This work presents the impact of the short glass fiber incorporation in rigid PVC compound through conventional processing techniques currently employed in the Brazilian industry. It were studied the influences of a) glass fiber geometry (E type), b) glass fiber content, c) titanium dioxide content and d) processing temperature in the physical, mechanical and thermal properties. The adhesion conditions between polymeric matrix and glass fiber was analyzed by scanning electron microscopy (SEM). Cost-benefit relation of composites was evaluated using materials index technique for mechanical conditions found in pressurized water pipes (cylinder with internal pressure) and in building construction profiles (beam loaded in bending). The results attained suggested that, in some cases, the mechanical properties enhancement (such as the increase of 45% in the modulus of elasticity for composites containing 20% of glass fiber) and the processing techniques required to produce it can present an interesting cost-benefit relation.
27

Inhibition, kinetic and modeling studies of acetylene and 1-chloro-1-fluoroethene on reductive dechlorination of TCE and vinyl chloride

Pon, George 17 December 2003 (has links)
Laboratory and modeling studies were performed with a mixed-anaerobic-culture obtained from the Evanite site in Corvallis, Oregon. The culture completely transforms trichloroethene (TCE) to cis-dichloroethene (c-DCE), vinyl chloride (VC), and finally to ethene. Acetylene inhibition studies were used to examine the culture's microbial activities. Kinetic studies determined the half-saturated constant (K[subscript s]), the maximum utilization rate (k[subscript max]X), and inhibition constants (K[subscript I]). The kinetic constants were used to model the results of inhibition studies using competitive and uncompetitive inhibition models. Acetylene was found to function as a reversible inhibitor and was used to probe the activities of reductive dechlorination. Various acetylene concentrations were used to differentiate microbial processes, including methanogenesis, acetogenesis, and halorespiration. Acetylene concentrations of 48, 192, and 12 ��M, respectively, were required to achieve 90% inhibition in the rates of methanogenesis, TCE and VC transformation. H���-dependent acetate production was not inhibited by acetylene. K[subscript s] values for TCE and VC were 12 ��M and 63 ��M, respectively. Model fitting of acetylene inhibition constants (K[subscript IC]) for TCE and VC transformations yielded the same value (0.4 ��M) for a competitive inhibition model. However, for uncompetitive inhibition the estimated K[subscript IU] for TCE to c-DCE, TCE to 1,1-DCE and VC to ethene were 13.3, 14.1 and 2.2 ��M, respectively. Competitive and uncompetitive inhibition models simulated experimental data equally well for results obtained at high TCE and VC concentrations. The models were further verified to fit transient data of acetylene inhibition at lower TCE and VC concentrations, and competitive inhibition resulted in a better fit to the experimental data. 1-chloro-1-fluoroethene (1,1-CFE) was found to track the rate of VC transformation well, since VC and 1,1-CFE had similar maximum transformation rates and K[subscript s] values. A competitive inhibition model with the measured K[subscript s] values, 63 and 87 ��M. was used to predict the rates of VC and 1,1-CFE transformation, respectively. The similar rates and results of acetylene and compound inhibition studies indicated VC and 1,1-CFE were transformed by the same enzyme. 1,1-CFE transformation by three different cultures, clearly demonstrate that 1,1-CFE was an excellent surrogate to track rates of VC transformation. / Graduation date: 2004
28

Environmental and Energy Saving Technologies of Vinyl Chloride Production

Kurta, Mykola 11 February 2013 (has links)
Recently, because of the increase of environmental concerns in process design, the need to enhance conversion to product and prevent generation of wasteful byproducts in the reactor network has become urgent. This prevents high cost treatment and separation costs downstream in the process. Therefore, in this thesis I focus on making production of vinyl chloride monomer (VCM) more efficient and on possible ways of industrial organochlorine waste (OCW) recycling. In particular, in the first experiment, we investigate how catalyst and its structure can affect product output. Infrared spectroscopy and X-ray diffraction analysis were utilized to investigate the structure of the γ-Al2O3 carrier with CuCl2 catalyst on its surface. Structure of the two catalysts, HarshowX1 and MEDC-B, and their effect on the mechanism of ethylene oxidative chlorination reaction into 1,2-dichlorethane were studied. Differential thermal analysis and mass spectroscopy were applied to study the structure and the mechanism differences between the deposited and permeated CuCl2 catalysts. The second experiment deals with ecological processing and recycling methods of wasteful byproduct that can be called chlororganic wastes. Typical waste products are 1,2-dichloroethane, 1,1,2-trichloroethane, vinylidene, and vinyl chloride monomer. Polymerization and copolymerization of typical waste products with their C5-C9 fraction resulted in non-toxic polymer products that can be used in construction and road-building industries. The possibility of joint chlorine and sulfide-containing chemical wastes recycling into polysulfide oligomeric products is discussed. This comprehensive recycling allows utilizing 80-90% of all wastes generated during synthesis of chlorinated products in the chemical industry. The results of the studies aim to improve the conversion of ethylene to vinyl chloride and minimize the formation of byproducts.
29

Influência dos plastificantes alternativos ao dioctil ftalato nas propriedades de compostos de poli (cloreto de vinila)

Mattana, Mônica January 2017 (has links)
O poli(cloreto de vinila) - PVC é considerado um polímero muito versátil devido à possibilidade deste ser formulado mediante a incorporação de aditivos, alterando suas características originais. Plastificantes a base de ftalatos, como o di(2-etilhexil) ftalato (DOP) são os mais utilizados, porém, existem regulamentações que estão restringindo a sua utilização, intensificando-se os estudos com possíveis alternativos. Desta forma, este trabalho visa avaliar a influência de plastificantes de diferentes naturezas nas propriedades físicas, mecânicas, térmicas e reológicas do PVC plastificado. Para formulação dos compostos foi utilizado a resina Norvic SP1000 produzida via suspensão, com VK65 e portanto, propícia para aplicações de materiais flexíveis, além disso, para cada composto utilizou-se uma dosagem de 60 pcr de sete diferentes plastificantes: DOP, considerado como referência para comparação dos resultados, diisononil ciclohexano (DINCH), di(2-etilhexil) ciclohexanoato (DOCH), di(2-etilhexil) adipato (DOA), di(2-etilhexil) tereftalato (DOTP), óleo de soja epoxidado (OSE) e plastificante de óleos vegetais (DIMIT) Neste estudo foram efetuadas avaliações nos compostos como, gelificação e fusão, reologia via reômetro de placas paralelas, densidade, índice de fluidez entre outras para compreender a influência de cada plastificante no processamento do composto e várias caracterizações no produto final como estabilidade térmica dos compostos via TGA, Metrastat, propriedades óticas, propriedades mecânicas como dureza Shore A, tração, resistência a abrasão, resiliência, envelhecimento em câmara UV assim como ensaios de exsudação dos plastificantes. Os resultados indicam comportamentos distintos do PVC em função da natureza química do plastificante utilizado. O plastificante DIMIT possui boa estabilidade térmica, porém os resultados de cor e parâmetros de processamento foram insatisfatórios quando comparados ao DOP, já os plastificantes OSE e DOA apresentaram bons resultados para as propriedades avaliadas. Conclui-se que dentre os plastificantes analisados não foi possível determinar qual seria o melhor para substituição direta do DOP considerando toda a gama de produtos flexíveis de PVC, contudo esse trabalho colabora para a avaliação e seleção do melhor plastificante com base nos requisitos de cada aplicação do produto. / The poly (vinyl chloride) - PVC is a very versatile polymer due to the possibility of being formulated by incorporating additives, which can change the resin characteristics. Plasticizers composed of phthalates, such as di(2-ethylhexyl) phthalate (DOP), are the most used, however, there are regulations restricting the use of this kind of plasticizers, intensifying studies with possible replacement alternatives. In this way, the objective of this work is to evaluate the influence of plasticizers from different sources in PVC, mainly physical, mechanical thermal stability, and rheological properties in the plasticized PVC. In the formulation of the compounds it was used the resin Norvic SP1000, product with VK65 and produced by suspension, suitable for flexible materials applications. In addition, it was used 60 phr of seven different plasticizers for each compound: DOP, considered as reference for all results, cyclohexane diisononyl (DINCH), di(2-ethylhexyl) cyclohexanoate (DOCH), di(2-ethylhexyl) adipate (DOA), di(2-ethylhexyl) terephthalate (DOTP), epoxidized soybean oil (OSE) and plasticizer produced from vegetable oils (DIMIT). In this study, the compounds were evaluated with many characterization analyzes, such as gelling and melting point in a torque rheometer, rheology by parallel plate rheometer, density, melt flow index in order to understand the influence of each plasticizer on the material processing Some characterizations in the final product as thermal stability through TGA, Metrastat, optical and mechanical properties such as hardness Shore A, tensile strength, abrasion resistance, resilience, aging in UV chamber as well as exudation tests. The results indicate different behaviors of PVC depending on the chemical nature of the plasticizer used. Results indicate that the DIMIT plasticizer had good thermal stability, but the color and processability results were unsatisfactory when compared to the DOP. In the other hand, the OSE and DOA presented good results for the evaluated properties. It can be concluded that among the plasticizers analyzed it wasn´t possible to determine the best for direct DOP replacement considering the entire range of flexible PVC products. However, this work contributes to the evaluation and selection of the best plasticizer based on the requirements of each application.
30

Influência dos plastificantes alternativos ao dioctil ftalato nas propriedades de compostos de poli (cloreto de vinila)

Mattana, Mônica January 2017 (has links)
O poli(cloreto de vinila) - PVC é considerado um polímero muito versátil devido à possibilidade deste ser formulado mediante a incorporação de aditivos, alterando suas características originais. Plastificantes a base de ftalatos, como o di(2-etilhexil) ftalato (DOP) são os mais utilizados, porém, existem regulamentações que estão restringindo a sua utilização, intensificando-se os estudos com possíveis alternativos. Desta forma, este trabalho visa avaliar a influência de plastificantes de diferentes naturezas nas propriedades físicas, mecânicas, térmicas e reológicas do PVC plastificado. Para formulação dos compostos foi utilizado a resina Norvic SP1000 produzida via suspensão, com VK65 e portanto, propícia para aplicações de materiais flexíveis, além disso, para cada composto utilizou-se uma dosagem de 60 pcr de sete diferentes plastificantes: DOP, considerado como referência para comparação dos resultados, diisononil ciclohexano (DINCH), di(2-etilhexil) ciclohexanoato (DOCH), di(2-etilhexil) adipato (DOA), di(2-etilhexil) tereftalato (DOTP), óleo de soja epoxidado (OSE) e plastificante de óleos vegetais (DIMIT) Neste estudo foram efetuadas avaliações nos compostos como, gelificação e fusão, reologia via reômetro de placas paralelas, densidade, índice de fluidez entre outras para compreender a influência de cada plastificante no processamento do composto e várias caracterizações no produto final como estabilidade térmica dos compostos via TGA, Metrastat, propriedades óticas, propriedades mecânicas como dureza Shore A, tração, resistência a abrasão, resiliência, envelhecimento em câmara UV assim como ensaios de exsudação dos plastificantes. Os resultados indicam comportamentos distintos do PVC em função da natureza química do plastificante utilizado. O plastificante DIMIT possui boa estabilidade térmica, porém os resultados de cor e parâmetros de processamento foram insatisfatórios quando comparados ao DOP, já os plastificantes OSE e DOA apresentaram bons resultados para as propriedades avaliadas. Conclui-se que dentre os plastificantes analisados não foi possível determinar qual seria o melhor para substituição direta do DOP considerando toda a gama de produtos flexíveis de PVC, contudo esse trabalho colabora para a avaliação e seleção do melhor plastificante com base nos requisitos de cada aplicação do produto. / The poly (vinyl chloride) - PVC is a very versatile polymer due to the possibility of being formulated by incorporating additives, which can change the resin characteristics. Plasticizers composed of phthalates, such as di(2-ethylhexyl) phthalate (DOP), are the most used, however, there are regulations restricting the use of this kind of plasticizers, intensifying studies with possible replacement alternatives. In this way, the objective of this work is to evaluate the influence of plasticizers from different sources in PVC, mainly physical, mechanical thermal stability, and rheological properties in the plasticized PVC. In the formulation of the compounds it was used the resin Norvic SP1000, product with VK65 and produced by suspension, suitable for flexible materials applications. In addition, it was used 60 phr of seven different plasticizers for each compound: DOP, considered as reference for all results, cyclohexane diisononyl (DINCH), di(2-ethylhexyl) cyclohexanoate (DOCH), di(2-ethylhexyl) adipate (DOA), di(2-ethylhexyl) terephthalate (DOTP), epoxidized soybean oil (OSE) and plasticizer produced from vegetable oils (DIMIT). In this study, the compounds were evaluated with many characterization analyzes, such as gelling and melting point in a torque rheometer, rheology by parallel plate rheometer, density, melt flow index in order to understand the influence of each plasticizer on the material processing Some characterizations in the final product as thermal stability through TGA, Metrastat, optical and mechanical properties such as hardness Shore A, tensile strength, abrasion resistance, resilience, aging in UV chamber as well as exudation tests. The results indicate different behaviors of PVC depending on the chemical nature of the plasticizer used. Results indicate that the DIMIT plasticizer had good thermal stability, but the color and processability results were unsatisfactory when compared to the DOP. In the other hand, the OSE and DOA presented good results for the evaluated properties. It can be concluded that among the plasticizers analyzed it wasn´t possible to determine the best for direct DOP replacement considering the entire range of flexible PVC products. However, this work contributes to the evaluation and selection of the best plasticizer based on the requirements of each application.

Page generated in 0.1621 seconds