• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 10
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of functional determinants in the C-terminal part of hepatitis C virus E1 glycoprotein ectodomain / Caractérisation de déterminants fonctionnels dans la partie C-terminale de l'ectodomaine de la glycoprotéine E1 du virus de l'hépatite C

Moustafa, Rehab 08 March 2019 (has links)
Aujourd’hui, le Virus de l'Hépatite C (VHC) infecte plus 70 millions de personnes dans le monde. L’Organisation mondiale de la santé prévoit l’élimination du virus VHC d’ici 2030, grâce aux récentes découvertes dans le milieu du développement médical. Ces derniers ont conduit à la production des antiviraux pangenotypiques à action directe (ADD). Le VHC est un virus enveloppé de l’ARN, avec une polarité positive. Il est constitué de nucléocapside entouré d’une membrane lipidique. La nucléocapside contient l’acide ribonucléique (ARN) et la protéine core. La membrane lipidique quant à elle contient à la surface les glycoprotéines E1 et E2. Ainsi ces protéines, sont les premières à rencontrer les hépatocytes, c’est donc grâce à elles que le virus parvient à entrer dans les cellules. Parmi les deux protéines, l’E2 a été la mieux caractérisée pour ses fonctions de liaisons aux récepteurs spécifiques. De plus les anticorps neutralisants ciblent majoritairement cette protéine. En se basant sur le fait que ce virus est membre de la famille des Flaviviridae, il a été suggéré par analogie, que le VHC contient des protéines de fusion de classe II et que la protéine E2 est la protéine de fusion. Cependant, les structures cristallines récentes d’E2 ont révélé qu'il lui manquait les caractéristiques structurelles des protéines de fusion de classe II. Ainsi, tous les regards se sont tournés sur la glycoprotéine E1, suggérant qu’elle est responsable de l’étape de fusion, seule ou à l’aide d’E2. En effet, la partie N-terminale de l'ectodomaine E1 a été récemment cristallisée. La caractérisation des résidus conservés dans cette région a démontré son importance pour l'infectivité du virus, pour l'interaction entre E1 et E2, ainsi que pour son implication dans l'interaction avec les récepteurs du VHC. En soutenant le rôle potentiel d'E1 dans le processus de fusion, différents segments de l'extrémité C-terminale de l'ectodomaine seraient impliqués dans les interactions avec les membranes modèles. Nous avons étudié en particulier deux régions d’intérêt. La première située dans la zone du peptide de fusion putatif (PFP) entre les acides aminés 270 et 291. Cette région se compose des séquences hydrophobes, soutenant son implication dans l'étape de fusion. La deuxième région englobant les acides aminés 314-342, d’une activité membranotrope située à proximité de la zone transmembranaire d’E1, a été démontrée par la cristallographie aux rayons X et les études de RMN comme comprenant deux hélices α (α2 et α3).Nous avons introduit 22 mutations dans la partie C-terminale de l'ectodomaine E1 dans le contexte d'un clone infectieux JFH1. Nous avons remplacé les résidus les plus conservés par de l'alanine, puis analysé l'effet des mutations sur le cycle de vie du virus. Vingt des vingt-deux mutants ont été atténué ou ont perdu leur pouvoir infectieux, ce qui indique leur importance dans le cycle viral. Nous avons observé différents phénotypes; certaines mutations ont modulé la dépendance du virus vis-à-vis des récepteurs CLDN1 et SRBI pour l’entrée cellulaire. Plusieurs mutations dans la région PFP, ont affecté la sécrétion et l'assemblage du virus, ainsi que l'hétérodimérisation E1E2. D’autres mutations, telles que les mutations de l'hélice α2 ont entraîné une atténuation grave ou une perte complète d'infectivité, sans affecter le repliement d’E1 et E2, ni la morphogenèse virale. Une caractérisation plus poussée de certains mutants au sein de la région hélice α2 a suggéré l'implication de cette région dans une étape tardive de l'entrée du VHC. Enfin, nos résultats montrent le rôle important joué par la glycoprotéine E1 dans l'hétérodimérisation de E1E2, la morphogenèse du virus, ainsi que son interaction avec les récepteurs du VHC et son implication potentielle dans l'étape de fusion. / Hepatitis C virus is currently estimated to infect around 71 million people around the world. However, recent advances in drug development led to the generation of pangenotypic direct acting antivirals (DAA), which may make it possible to eliminate HCV by 2030 as planned by the World health organization (WHO). HCV is a small RNA enveloped virus of positive sense. The RNA is encapsidated and surrounded by a lipid bilayer in which the E1 and E2 envelope glycoproteins are anchored on the surface. Thus, E1 and E2 are the first viral proteins to encounter the hepatocytes and mediate the entry step. HCV entry into hepatocytes is a sophisticated process that includes several steps ranging from interaction of glycoproteins with cellular host attachment factors and HCV specific-receptors, which is followed by internalization via clathrin-mediated endocytosis. Finally, viral and endosomal membranes merge at acidic pH leading to the release of viral RNA into the cytoplasm. Among the two glycoproteins, E2 has been the better characterized, as it is responsible for binding to cellular receptors and targeted by neutralizing antibodies. As a member of the Flaviviridae family, it has been suggested by analogy that HCV encodes class II fusion proteins and that E2 is the fusion protein. Nevertheless, the recent crystal structures of E2 revealed that it lacks structural features of class II fusion proteins. Thus, E1 glycoprotein became under the spotlight with the assumption that it is responsible for the fusion step whether alone or with the help of E2. Indeed, the N-terminal part of E1 ectodomain was recently crystallized, and the characterization of conserved residues within this region demonstrated its importance for virus infectivity, E1E2 interaction as well as its involvement in the interplay with HCV receptors. Supporting the potential role of E1 in the fusion process, different segments in the C-terminal of the ectodomain have been reported to be involved in interactions with model membranes. In particular, we investigated two regions of interest. The first one located in the putative fusion peptide (PFP) region between amino acid 270 and 291, containing hydrophobic sequences, supporting its involvement in the fusion step. The second region spanning amino acids 314-342, a membranotropic region located proximal to the transmembrane region of E1 and has been shown by X-ray crystallography and NMR-studies to comprise two α-helices (α2 and α3). We introduced 22 mutations in the C-terminal part of E1 ectodomain in the context of a JFH1 infectious clone. We replaced the most conserved residues with alanine and analyzed the effect of the mutations on the viral life cycle. Twenty out of the 22 mutants were either attenuated or lost their infectivity, indicating their importance for the viral life cycle. We observed different phenotypes; some mutations modulated the dependence of the virus on CLDN1 and SRBI receptors for cellular entry. Most mutations in the PFP region affected virus secretion and assembly as well as E1E2 heterodimerization. Nevertheless, the majority of mutations in the α2-helix (aa 315-324) led to severe attenuation or complete loss of infectivity without affecting E1E2 folding or viral morphogenesis. Further characterization of some mutants within this region suggested the involvement of the α2-helix in a late step of HCV entry. Finally, our results show the important role of E1 played in E1E2 heterodimerization, virus morphogenesis, interaction with HCV receptors and its potential involvement in the fusion step.
2

Mechanisms of Membrane Disruption by Viral Entry Proteins

Kim, Irene January 2012 (has links)
To enter and infect cells, viruses must overcome the barrier presented by the cell membrane. Enveloped viruses, which possess their own lipid bilayer, fuse their viral membrane with the cell membrane. Non-enveloped viruses, whose outer surface is composed of proteins, penetrate through the hydrophobic interior of the cell membrane. Viruses accomplish the processes by coupling conformational changes in viral "entry proteins" to membrane disruption. This dissertation investigates the membrane disruption mechanisms of rotavirus, a non-enveloped virus, and vesicular stomatitis virus (VSV), an enveloped virus. Rotavirus uses proteins of its outer capsid to penetrate the membrane and deliver a transcriptionally-active core particle into the cell cytoplasm. \(VP5^*\), an outer capsid protein, undergoes a foldback rearrangement that translocates three clustered hydrophobic loops by \(\sim 180^{\circ}\). This rearrangement resembles the foldback rearrangements of enveloped virus fusion proteins. In the first half of my dissertation, I show that the hydrophobicity of the \(VP5^*\) apex is required for membrane disruption during rotavirus cell entry by mutating hydrophobic residues within the loop to hydrophilic residues. One particular mutation diminishes liposome interaction by the protein, blocks membrane penetration by virus particles in cells, and reduces particle infectivity by 10,000-fold. VSV uses its fusion protein, G, to fuse at low pH. Unlike other viral fusion proteins, pH-induced conformational changes in G are reversible. In the second half of my dissertation, I measure the fusion kinetics of individual VSV particles using a single-particle fusion assay previously developed for influenza virus. I find that hemifusion by VSV consists of at least two steps, an initial step that is pH-dependent and reversible, and a second step that is pH-independent. At low pHs, the second step becomes the sole rate-limiting step. I also show that at pH 6.6, the VSV particle enters a stable intermediate state that binds tightly to membranes but does not precede to fusion. This dissertation uses a variety of experimental approaches to arrive at a more detailed understanding of how viruses use their entry proteins to either penetrate or fuse with the cell membrane.
3

RNAi Screens in Primary Human Lung Cells Reveal Hermansky-Pudlak Syndrome Proteins as Influenza Suppressors

DeGrace, Marciela January 2012 (has links)
Influenza is an important human pathogen that causes fatal disease in 250,000-500,000 people worldwide each year. Because of high levels of variation between influenza strains, vaccines are not always effective and must be administered annually. Influenza virus, which replicates primarily in the lung epithelium, encodes only 10 proteins and relies heavily on host products to replicate. Determining which cellular factors are important for influenza replication represents an important area of virology and cellular biology research, and could elucidate proteins or pathways to target for antiviral therapies. We developed a high throughput screening method in primary human bronchial epithelium (HBECs) to identify novel regulators of influenza replication. We first used this method to functionally examine 1745 genes that were identified as potential influenza regulators due to transcriptional regulation by virus or viral products, direct interaction with viral proteins via yeast two-hybrid, or through computational analysis. This screen confirmed some known regulators of influenza replication while identifying novel viral interactors as influenza regulators (e.g. USHBP1, ZMAT4). We also found that the WNT, p53, and ER stress pathways, among others, affect viral replication and interferon production. The life cycle of influenza involves extensive intracellular trafficking of viral components. We again used RNAi to systematically examine the roles of vesicle, RNA, and protein trafficking genes in the production of infectious influenza A virus in primary lung cells. Among the factors that significantly impact viral infection, we identify a set of five genes with strong antiviral effects that are mutated in patients with Hermansky-Pudlak syndrome (HPS). Depletion of HPS genes leads to elevated viral RNA at an early stage of influenza infection prior to transcription. In contrast, depletion of these genes does not alter the innate immune response to virus or interferon. Using an HPS-1 patient cell line, we find an increase in viral fusion to endosomal compartments but no change in viral binding to the cell surface or entry into the early endosome. Our studies uncover a potential role for many trafficking factors in the influenza life cycle, and point to an HPS1-dependent process that inhibits viral entry prior to viral membrane fusion.
4

Caractérisation des interactions du virus de l'hépatite C avec les protéoglycanes à héparane sulfate / Characterization of Hepatitis C Virus interaction with heparan sulfate proteoglycans

Xu, Yan 16 September 2014 (has links)
L’entrée du virus de l’hépatite C (VHC) dans les hépatocytes est un événement multi-étapes complexe, impliquant un certain nombre de facteurs cellulaires. Elle est initiée par la fixation des particules virales sur des structures d’héparanes sulfates (HS) présentes à la surface de l’hépatocyte. Cette étape initiale reste cependant peu comprise. En effet, en raison de l’interaction de la particule virale du VHC avec des lipoprotéines, la contribution exacte des différents composants du virion à cette interaction reste controversée. Au cours de cette thèse, nous avons étudié le rôle potentiel de protéines d'enveloppe du VHC et de l'apolipoprotéine E dans l'étape de liaison aux HS. Nous avons d’abord montré que la délétion de la région hypervariable 1 (HVR1), une région précédemment proposée pour participer à l’interaction avec les HS, n'avait aucun effet sur la liaison du virion aux HS, indiquant que cette région n'est pas impliquée dans cette interaction. Nous avons également utilisé des anticorps monoclonaux neutralisants reconnaissant différentes régions des glycoprotéines d'enveloppe du VHC dans un test de compétition utilisant des billes d’agarose couplées à l’héparine, un homologue structural des HS, pour précipiter le virus. Bien que les glycoprotéines d’enveloppe du VHC dissociées de la particule virale interagissaient avec l'héparine, aucun de ces anticorps n’était capable d'interférer avec l'interaction entre la particule virale et l’héparine, suggérant fortement que les glycoprotéines d'enveloppe du VHC présente à la surface des virions ne sont pas accessibles pour interagir avec les HS. En revanche, nos résultats d’études cinétiques, d’interaction avec l’héparine ainsi que les expériences d'inhibition avec des anticorps anti-apolipoprotéine E indiquent que cette apolipoprotéine joue un rôle majeur dans l'interaction initiale entre le VHC et les HS. Enfin, la caractérisation des déterminants structuraux des HS nécessaires à l'infection par le VHC, à l’aide d’ARN interférents ciblant des enzymes impliquées dans la voie de biosynthèse des HS et par compétition avec des héparines modifiées, indique que la N-sulfatation et la 6-O-sulfatation sont nécessaires pour l’initiation de l'infection par le VHC. Par contre la 2-O-sulfatation n’est pas indispensable pour l’étape d’entrée cellulaire du VHC. Enfin, nous avons également montré que la taille minimale des oligosaccharides d’HS requise pour l'infection par le VHC est un decasaccharide. En conclusion, l’ensemble de ces données indique que le VHC détourne l'apolipoprotéine E pour initier son interaction avec des structures d’HS spécifiques. / Hepatitis C virus (HCV) entry into hepatocytes is a complex multistep process involving a series of cellular factors. HCV entry is initiated by the binding of viral particles to cell surface heparan sulfate (HS) structures. However, due to the lipoprotein-like structure of HCV, the exact contribution of virion components to this interaction remains controversial. Here, we investigated the relative contribution of HCV envelope proteins and apolipoprotein E in the HS-binding step. Deletion of hypervariable region 1, a region previously proposed to be involved in HS-binding, did not alter HCV virion binding to HS, indicating that this region is not involved in this interaction. Neutralizing monoclonal antibodies recognizing different regions of HCV envelope glycoproteins were also used in a pull-down assay with beads coated with heparin, a close HS structural homologue. Although isolated HCV envelope glycoproteins could interact with heparin, none of these antibodies was able to interfere with virion-heparin interaction, strongly suggesting that, at the virion surface HCV envelope glycoproteins are not accessible for HS binding. In contrast, results from kinetic studies, heparin pull-down and inhibition experiments with anti-apolipoprotein E antibodies indicate that this apolipoprotein plays a major role in HCV-HS interaction. Finally, characterization of HS structural determinants required for HCV infection by silencing enzymes involved in the HS biosynthesis pathway and by competition with modified heparin indicated that N- and 6-O-sulfation but not 2-O-sulfation are required for HCV infection, and that the minimum HS oligosaccharide length required for HCV infection is a decasaccharide. Together, these data indicate that HCV hijacks apolipoprotein E to initiate its interaction with specific HS structures.
5

Characterization of Trafficking Factors Involved in Ebola Virus Entry

Qiu, Shirley 08 June 2021 (has links)
Ebola virus (EBOV) and other members of the Filoviridae family are enveloped RNA viruses that are the causative agents of sporadic outbreaks of highly lethal disease in humans and non-human primates. EBOV entry into host cells requires attachment, internalization, and subsequent trafficking to the late endosomal/lysosomal compartment in order to reach the filovirus entry receptor, Niemann-Pick C1 (NPC1) and other triggering factors required for EBOV glycoprotein (GP)-mediated fusion between the viral and host membranes. The highly regulated nature of endosomal trafficking coupled with the dependence of EBOV on accurate endolysosomal trafficking for entry led us to hypothesize that the virus depends on—and potentially actively regulates—a consortium of specific host trafficking factors. In this thesis, we investigated the role of two trafficking complexes involved in endosomal maturation and trafficking, the Homotypic Fusion and Vacuole Protein Sorting (HOPS) complex and the PIKfyve-ArPIKfyve-Sac3 (PAS) complex, in EBOV entry. Furthermore, in order to further dissect how the PAS complex is regulated and performs its effector functions, we performed a protein-protein interaction screen using BioID in order to define the PAS cellular interactome. Using an inducible CRISPR/Cas9 system, we found that depletion of each HOPS subunit, as well as depletion of a positive regulator of the HOPS complex, UVRAG, impaired EBOV entry. Furthermore, we mapped a region of UVRAG spanning residues 269-442 to be key for binding to the HOPS complex and mediating EBOV entry, indicating that expression of and coordination between the HOPS complex and UVRAG are required for EBOV entry. Similarly, knockout of each subunit of the PAS complex was found to impair EBOV entry. Further molecular dissection using small molecule inhibitors and enzymatic mutants of PIKfyve and Sac3 demonstrated that PIKfyve kinase activity is required for EBOV entry, while Sac3 phosphatase activity is dispensable. Using a fluorescent probe for phosphatidylinositol(3,5)bisphosphate, the lipid product generated by PIKfyve, we also found evidence that stimulation of cells by EBOV virus-like-particles enhances PIKfyve activity, suggesting that the virus can promote its entry by activating the PAS complex. Finally, using BioID to screen for interacting proteins of the PAS complex, we identified candidate interactors involved in endosomal trafficking as well as other cell processes including mitochondrial function and cell cycle regulation. Further characterization of one candidate interactor, the coatomer complex I (COPI), using proximity ligation assays validated the interaction between ArPIKfyve and COPI subunit COPB1, and provides further evidence for a role of COPI in endosomal trafficking. Taken together, these results highlight the importance of cellular trafficking factors involved in diverse facets of endosomal dynamics, from lipid metabolism to membrane tethering, for the entry of EBOV and other filoviruses, and further shed light on how EBOV can actively modulate host trafficking networks to promote successful viral entry and infection. Further molecular dissection of how the virus hijacks cell trafficking will facilitate the development of antiviral therapeutics as well as elucidate how these fundamental cellular processes are regulated.
6

The N500 Glycan of the Respiratory Syncytial Virus F Protein is Required for Fusion, but Not for Stabilization or Triggering of the Protein

Costello, Heather M. 26 December 2013 (has links)
No description available.
7

Herstellung autofluoreszierender retroviraler Partikel zur Analyse der zellulären Aufnahmemechanismen von Foamyviren

Stirnnagel, Kristin 25 February 2016 (has links) (PDF)
Foamyviren (FV) gehören zur Familie der Retroviridae, werden aber aufgrund besonderer Eigenschaften in eine eigene Unterfamilie, die Spumaretrovirinae, eingeordnet. FV besitzen vor allem in vitro einen sehr breiten Tropismus, so dass bisher keine Zelllinie bekannt war, die nicht durch FV infiziert werden konnte. Obwohl diese Besonderheit darauf schließen lässt, dass ein sehr ubiquitäres Molekül auf der Wirtszelloberfläche für die FV-Bindung verwendet wird, ist der Rezeptor für die Virus-Aufnahme noch nicht bekannt. Dass FV einen pH-abhängigen Aufnahmemechanismus verwenden, lässt eine endozytotische Aufnahme vermuten. Dennoch sind die frühen Replikationsschritte, die zur Fusion der viralen und Wirtszellmembran führen, nur unzureichend charakterisiert. Deswegen wurden in der vorliegenden Arbeit funktionelle autofluoreszierende FV hergestellt, um die Bindung und Aufnahmemechanismen foamyviraler Partikel in Wirtszellen mit fluoreszenzmikroskopischen Analysen zu untersuchen. Mit diesen Methoden konnten erstmalig vier Zelllinien identifiziert werden, die nicht mit FV infizierbar sind, und damit mögliche Kandidaten für die Identifizierung des unbekannten FV Rezeptors darstellen. Des Weiteren wurden die fluoreszierenden FV erfolgreich eingesetzt, um die Fusionsereignisse zwischen viraler und zellulärer Membran in Echtzeit in lebenden Zellen zu untersuchen. Die durchgeführte „Single Virus Tracking“-Analyse zeigte, dass PFV (Prototype FV) Env-tragende Partikel sowohl an der Plasmamembran als auch in vermeintlichen Endosomen fusionieren können, wohingegen SFV (Simian FV) Env-tragende Partikel die Fusion wahrscheinlich nur in Endosomen auslösen können. Hinweis zur Nutzung der Filmdateien: Öffnen mit QuickTimePlayer bzw. ImageJ
8

Study of chikungunya virus entry and host response to infection / Étude de l'entrée du virus du chikungunya et de la réponse de l'hôte à l'infection

Cresson, Marie 15 April 2019 (has links)
Les alphavirus sont un groupe de virus enveloppés à ARN simple brin positif retrouvés sur la totalité du globe et responsables de nombreuses maladies humaines et animales. Durant la dernière décennie, une réémergence du virus du chikungunya (CHIKV) a été observée causant de nombreuses épidémies sur tous les continents. Malgré les nombreuses études, les mécanismes moléculaires de réplication du CHIKV et les interactions hôte-virus restent peu caractérisées. L’objectif de mon travail était de mieux comprendre et caractériser l’entrée du virus du chikungunya et les facteurs de l’hôte impliqués dans la réplication chez les mammifères. Plusieurs approches distinctes ont été utilisées dans ce projet. Dans un premier temps, nous avons mis en avant une diminution de l’infection du CHIKV après un traitement avec du fer sous forme de citrate d’ammonium ferrique et nous avons étudié le rôle potentiel dans l’entrée virale de NRAMP2 et TFRC, deux protéines impliquées dans le transport cellulaire du fer et connus comme récepteurs d’entrée de plusieurs virus. D’autre part, nous nous sommes intéressés à deux autres protéines, CD46 et TM9SF2, identifiés à travers un criblage par ARNi réalisé en collaboration, dans le but de déterminer si elles sont utilisées comme facteurs d’entrée par le virus du chikungunya. Dans un dernier axe, nous avons mis en place et réaliser un criblage perte de fonction sur le génome entier en utilisant la technologie CRISPR/Cas9 afin d’identifier des facteurs de l’hôte importants pour l’entrée du CHIKV, sa réplication ou la mort viro-induite. Bien qu’il soit apparu que l’approche utilisée pour le criblage devrait être optimisée, nous avons pu identifier des candidats potentiellement nécessaires pour l’infection par le CHIKV. Ces candidats sont testés individuellement afin de confirmer leur implication dans la biologie du virus / Alphaviruses are a group of enveloped, positive-sense RNA viruses which are distributed almost worldwide and are responsible for a considerable number of human and animal diseases. Among these viruses, the Chikungunya virus (CHIKV) has recently re-emerged and caused several outbreaks on all continents in the past decade. Despite many studies, molecular mechanisms of chikungunya virus replication and virus-host interactions remain poorly understood. The aim of my project was to better understand and characterize the CHIKV entry and the host factors involved during replication steps in mammals. Several different approaches have been used in this work. As a first step, we have demonstrated a decrease of CHIKV infection after iron treatment in form of ferric ammonium citrate and we have studied the potential role in viral entry of NRAMP2 and TFRC, two proteins involved in iron transport and known receptors for other viruses. On the other hand, we have also focused on two proteins, CD46 and TM9SF2, identified through an RNAi screen in collaboration, in order to determine if they are required as entry factors for chikungunya virus. In a last axis, we have set up and carried out a genome-wide loss of function screen with the CRISPR/Cas9 technology in order to identify host factors important for chikungunya virus entry, replication or virus-induced cell death. Although it appears that screen conditions should be optimized, we have identified potential candidates required for CHIKV infection and we are currently testing them
9

Ebola virus: entry, pathogenesis and identification of host antiviral activities

Rhein, Bethany Ann 01 December 2015 (has links)
Ebola virus (EBOV) is a member of the Filoviridae family of highly pathogenic viruses that cause severe hemorrhagic fever and is the causative agent of the 2014 West Africa outbreak. Currently, there are no approved filovirus vaccines or treatments to combat these sporadic and deadly epidemics. One target for EBOV antiviral therapy is to block viral entry into host cells. Recently, phosphatidylserine (PtdSer) receptors, primarily known for their involvement in the clearance of dying cells, were shown to mediate entry of enveloped viruses including filoviruses. The PtdSer receptors, T-cell immunoglobulin mucin domain-1 (TIM-1) and family member TIM-4, serve as filovirus receptors, significantly enhancing EBOV entry. TIM-dependent virus uptake occurs via apoptotic mimicry by binding to PtdSer on the surface of virions through a conserved PtdSer binding pocket within the amino terminal IgV domain. TIM-4 is expressed on antigen presenting cells (APCs), including macrophages and dendritic cells (DCs), which are critical in early EBOV infection. My studies are the first to define the molecular details of virion/TIM-4 interactions and establish the importance of TIM-4 for EBOV infection of murine resident peritoneal macrophages. In addition, previous work has utilized only in vitro models to establish the importance of the TIM proteins in EBOV entry. My studies are the first to demonstrate the importance of TIM-1 and TIM-4 for in vivo EBOV pathogenesis and to confirm them as relevant targets of future filovirus therapeutics. Macrophage phenotypes can vary greatly depending upon chemokine and cytokine signals from their microenvironment. Historically, macrophages have been classified into two major subgroups: classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophages are a critical early target of EBOV infection and my work primarily focused on interferon gamma-stimulated (M1) macrophages since this treatment profoundly inhibited EBOV infection of human and murine macrophages. Interferon gamma treatment blocked EBOV replication in macrophages, reducing viral RNA levels in a manner similar to that observed when cultures were treated with the protein synthesis inhibitor, cycloheximide. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited EBOV infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit infection of negative strand RNA viruses including EBOV. In addition and most exciting, using MA-EBOV, we found that murine interferon gamma, when administered either 24 hours before or after infection, protects lethally challenged mice and significantly reduces morbidity. Our findings suggest that interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option.
10

Immortalized human hepatocyte, an alternate model for the study of the propagation of HCV in vivo and in vitro

Mohajerani, Seyed Amir 06 1900 (has links)
The chimeric Alb-uPA SCID mouse that has been transplanted with human hepatocytes is a model to facilitate in vivo study of HCV. We explored further development of the model by using repopulation with immortalized human hepatocytes (IHH) in place of primary human hepatocyte (PHH) transplantation to support HCV infection. In vitro HCV studies typically utilize a human hepatoma cell line (Huh7) and rely on transfection with transcribed genomic RNA derived from a unique HCV strain (JFH1). Unfortunately, this system has not been successful in support of infection with serum-derived HCV (HCVser). IHH may offer an alternative since their differentiation status remains close to that of PHH. IHH transfected with HCV RNA (H77 or JFH1) or infected with HCVser showed stable intracellular and supernatant HCV RNA by real-time RT-PCR. IHH showed intracellular HCV NS3 proteins. HCV transfected or infected IHH secrete infectious HCVcc for in vivo and vitro. / Experimental Surgery

Page generated in 0.462 seconds