• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>AUTOMATION-TO-HUMAN TRANSITION OF CONTROL: </b><b>AN EXAMINATION OF PRE-TRANSITION BEHAVIORS THAT INFLUENCE READINESS TO TAKE OVER FROM CONDITIONALLY AUTOMATED VEHICLES</b>

Nade Liang (7044191) 08 March 2024 (has links)
<p dir="ltr">Automated Driving Systems (ADS) have evolved significantly over the past decade. With conditionally automated driving systems still requiring constant driver supervision and human intervention upon system request, a driver’s readiness to take over from an ADS has significant safety implications. Research suggests that drivers using ADS are more likely to engage in non-driving-related tasks (NDRTs), and this engagement can deteriorate takeover performance. However, different NDRTs can involve engagement of physical, visual and/or cognitive resources, which all can affect the takeover process in different ways. The potential interaction effects among these factors may be the cause of mixed empirical findings regarding the influence of NDRT engagement on takeover readiness and performance. Additionally, with more advanced ADS, takeover scenarios are likely to be less urgent. Yet, the ways in which drivers behave in response to a takeover request to intervene during such less urgent scenarios while engaged in NDRTs is still not well understood.</p><p dir="ltr">The purpose of this dissertation is to provide a better understanding of drivers’ response behavior during a conditionally automated vehicle takeover process by analyzing drivers’ motor, visual, and cognitive readiness in response to a takeover request (TOR). The work was completed in two phases. The first phase focused on the effects of pre-takeover visual engagement on takeover readiness in urgent situations. Two experiments were conducted as part of this first phase. Particularly, Study 1 investigated drivers’ post-TOR visual attention allocation and cognitive readiness after continuous visual NDRT engagement before a TOR. Study 2 examined drivers’ pre-TOR visual attention allocation and takeover performance both during and after voluntary engagement with visual NDRTs. The second phase used a non-urgent takeover scenario to investigate drivers’ takeover behavior and visual attention allocation when prioritizing the engagement of visual-manual NDRTs that differed in terms of cognitive engagement levels.</p><p dir="ltr">Study 1 required continuous visual attention in NDRTs and manipulated only the location of visual attention before an auditory TOR. Dependent measures included duration, location, and directness eye-tracking measures after the TOR, as well as freeze-probe cognitive readiness scores. Overall, delayed visual attention re-allocation in the driving scene, less dispersed gaze patterns, and worse perception and comprehension of road hazards were associated with off-road visual NDRT engagement. In addition, no significant benefit of enforcing on-road visual attention before the TOR, compared to the baseline condition without NDRT requirements, were found. These findings highlight the need to investigate the effects of more naturalistic NDRT engagement on takeover attention reallocation and takeover performance.</p><p dir="ltr">Study 2 complemented Study 1 by allowing voluntary switching of visual attention between the NDRT and the driving scene prior to the TOR, with the driving task being a priority. In addition, Study 2 investigated drivers’ takeover quality and understanding of the takeover scene using the appropriateness of their takeover decisions. Dependent measures were pre- and post-takeover eye-tracking measures, aligning to those used in Study 1, in addition to motor response measures, longitudinal and lateral vehicle control measures, and decisions made in response to a road obstacle. Overall, the driver’s post-TOR behaviors were not significantly affected by NDRT conditions, but visual NDRT-induced differences in gaze distribution were associated with the appropriateness of takeover decisions.</p><p dir="ltr">Finally, Study 3 used knowledge from prior studies to isolate the effects of different levels of cognitive engagement in real-world visual-manual NDRTs. The purpose was to investigate the effects of cognitive engagement on drivers’ visual attention allocation before and during the takeover, as well as on takeover performance in non-urgent takeover scenarios, where NDRT engagement was a priority. Dependent measures included eye-tracking measures, takeover response time, and vehicle control measures, used in prior studies. In summary, engagement in NDRTs with higher levels of cognitive engagement resulted in significant differences in pre-TOR visual attention allocation and less stable takeover maneuvers.</p><p dir="ltr">The findings from this work contribute to a better understanding of the effects of different components of NDRT engagement on takeover performance in conditionally automated driving systems. Ultimately, this work can contribute to improving the design of next-generation human-machine interfaces in surface transportation, including driver monitoring systems and in-vehicle displays, that promote safer human-automation integration in future ADS.</p>
2

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 28 April 2010 (has links) (PDF)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
3

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 03 May 2010 (has links) (PDF)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.
4

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
5

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.

Page generated in 0.1364 seconds