• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 67
  • 41
  • 25
  • 21
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 438
  • 438
  • 438
  • 100
  • 64
  • 58
  • 58
  • 53
  • 50
  • 49
  • 49
  • 46
  • 46
  • 45
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Performance Study on the Treatment of Airborne VOCs Generated from A Chemical Plant by A Pilot Biofiter Packed with Fern Chips

Huang, Jing-yi 25 June 2008 (has links)
This study armed to develop a biotrickling biofilter packed only with fern chips for the removal of air-borne low concentration VOCs (volatile organic compounds) emitted from a solvent refinery located in Kaohsiung county of southern Taiwan. The fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter (0.80 mL ¡Ñ 0.75 mW ¡Ñ 1.50 mH) packed with 0.24 m3 fern chips was used for the performance study. The study was conducted in the plant by drawing vented gas streams from two distillation columns and two solvent storage vessels. The gas streams contain aromatics and oxygenated hydrocarbons such as benzene, alcohols, and esters. Results indicated that suitable nutrition rates are 10, 100, and 10 g/m3.d, respectively, of milk powder, Urea-N, and K2HPO4-P, accompanied with a water spraying rate of 125 L/m3.d. Around 85% of VOCs in the influent gas with concentrations of 600-3,200 ppm (as CH4) could be removed under an average loading of 60 g VOC (as methane)/m3.h. A test indicated that odor intensity (expressed as dilution to threshold (D/T) ratio) of the influent gas could be reduced from around 7,330 to 73.
152

Treatment of Gaseous Volatile Organic Compounds by Catalytic Incineration and a Regenerative Catalytic Oxidizer

Huang, Shih-Wei 29 June 2008 (has links)
Volatile organic compounds (VOCs) can detrimentally affect human health directly and indirectly. However, the main environmental concern of VOCs involves the formation of smog. In the presence of nitrogen oxides, VOCs are the precursors to the formation of ground level ozone. Isopropyl alcohol (IPA) and toluene are extensively used in industry as solvents. They are all highly toxic to animals and humans. Accordingly, IPA and toluene are strongly associated with problems of VOCs. Catalytic incinerations and a regenerative catalytic oxidizer (RCO) were adopted to decompose VOCs herein. Various catalysts were prepared and developed in this study. The screening test of catalytic activity and the influences of the operational parameters on VOCs removal efficiencies were widely discussed through catalytic incinerations of VOCs. The more effective and cheaper catalysts through above discussions of catalytic incineration were selected. And they were utilized in an RCO to investigate their performance in VOCs oxidation and RCO operations. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it has the excellent performance in incineration efficiency and economic efficiency. The achievements of this study are summarized as follows: (1) Treatment of isopropyl alcohol (IPA) using ceramic honeycomb(CH) catalyst The eighteen ceramic honeycomb catalysts we prepared by various methods (co-precipitation, wet impregnation and incipient impregnation), various metal weight loadings (5 ~ 20 wt %), and various metals (Cu and CuCe) were used in the experiment. The results indicate that 20 wt%CuCe/(CH) catalyst prepared by wet impregnation had the best performance in CO2 yield because TC50 and TC95 were 245¢J and 370¢J, respectively, under the following operating conditions; a space velocity of 12000 hr-1, an inlet IPA concentration of 1600 ppm, an oxygen concentration of 21%, and a relative humidity of 25%. Given the operational parameters of IPA oxidation experiments, the CO2 yields increased with higher temperature and oxygen concentration, but decreased with inlet IPA concentration, space velocity and the relative humidity increased. Moreover, the stability test results show that the 20 wt%CuCe/(CH) catalyst had excellent stability. (2) Treatment of toluene using molecular sieve(MS) catalyst Molecular sieve catalysts with various metals (Cu, Co, Mn, CuMn, CuCo, MnCo) and various loadings (5~10 wt %) were produced by wet impregnation to treat toluene. The results indicate that 10 wt%CuCo/(MS) had the best performance in toluene conversion because T50 and T95 were 295¢J and 425¢J, respectively, at an influent concentration of toluene of 900 ppm, an oxygen concentration of 21%, a space velocity of 12000 hr-1, and a relative humidity of 26%. The conversions of toluene increased with the reaction temperature and the influent concentration of oxygen, but decreased as the initial concentration of toluene and the space velocity increased. Moreover, we did not find any decay between the fresh and used catalysts using SEM and EDS. (3) Treatment of isopropyl alcohol (IPA) using Cu/(CH) and CuCo/(CH) catalysts We used the 20 wt% CuCo/(CH) and 20 wt% Cu/(CH) catalysts in a pilot RCO to test IPA oxidation performance under various conditions. The best catalyst was selected, and the economic efficiency of RCO and the phenomenon of RCO operations were more widely discussed. The results demonstrate that 20 wt% CuCo/(CH) catalyst performed well in an RCO because it was effective in treating IPA, with a CO2 yield of up to 95%. It also had the largest tolerance of variations in inlet IPA concentration and gas velocity. The 20 wt% CuCo/(CH) catalyst in an RCO also performed well in terms of TRE, pressure drop and selectivity to CO2. The thermal recovery efficiency (TRE) decreased as gas velocity increased. The temperature difference (Td) and pressure drop increased with gas velocity and heating zone temperature. The TRE range was from 87.8 to 91.2 % and the Td ranged from 22.1~35.1¢Junder various conditions. Finally, the stability test results indicate that the 20 wt% CuCo/(CH) catalyst was very stable at various CO2 yields and temperatures. (4) Treatment of toluene using CuCo/(CH) catalysts with various carriers In this work, three catalysts (10 wt%CuCo/(G)¡B10 wt%CuCo/(MS) and 20 wt% Cu/(CH)) were prepared by wet impregnation, and used in an RCO to test their performance in incineration efficiency and economic efficiency under various operational conditions. Then the best catalyst was selected and the phenomenons of RCO operations were further investigated. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it is effective in treating toluene with a toluene conversion of up to 95% at the heating zone temperature (Tset) = 400¢J under various conditions. The 10 wt% CuCo/(G) catalyst had the greatest tolerance against the effects of inlet toluene concentration and gas velocity, and exhibited the best performance in terms of TRE , Td and pressure drop. The TRE range was from 90.2 to 92.9 % and Td ranged from 18.2 to 30.9¢J under various conditions at Tset = 300~400¢J. Moreover, when 10 wt% CuCo/(G) catalyst was used in an RCO, the results demonstrate that (1) high selectivity to CO2 ; (2) decrease in TRE and increase in Td as increasing the shifting time; (3) an insignificant effect of shifting time on pressure drop and (4) excellent stability of 10 wt% CuCo/(G) catalyst in a long period test.
153

The Study on Regenerative Catalytic Oxidizer of Volatile Organic Compounds in Soil

Lee, Rong-chang 22 July 2009 (has links)
Oil storage tanks and their pipelines are mostly constructed under the ground. If the leaches are occurred, the soil pollution and the contamination of groundwater quality will influenced seriously. The soil of oil polluted sites is usually containing the huge amounts of volatile organic compounds (VOCs) and other organics. These VOCs is uncomfortable on physical body when they spread into atmosphere not only to cause the harm of human health but also to react into photochemical smog. Besides, the VOCs are probably reacting with nitrogen oxides into the problems of high concentrations of ozone. In this study, we used a regenerative catalytic oxidizer (RCO) to deal with VOCs in soil of the oil polluted sites. The RCO system was packed with self-made catalyst of 20 wt%CuMn/£^-Al2O3. Experimental results revealed 90¡Ó5% of the influent VOCs (C0=450-10,000 ppm) was thermally destruction with no catalyst in beds operated with a valve shifting time (ts) of 2 min, superficial gas velocities (Ug) of 0.37 m/s (evaluated at an influent air temperature of around 30¢J) and present maximum destruction temperature (TS) of 800-900¢J. With the catalyst packings and operation conditions of Ug=0.37 m/s and C0=450~10,000 ppm, the destruction efficiency of 93.35 and 96.5% were observed, respectively in average at TS of 600 and 650¢J. When Ug=1.11 m/s and C0=450-10,000 ppm, the destruction efficiency of 87.51 and 93.75% were observed, respectively in average at TS of 600 and 650¢J. The destruction efficiency of RCO is high at higher influent concentration of VOCs and low gas velocities at TS=600-650¢J.
154

The Sink-Effect in Indoor Materials : Mathematical Modelling and Experimental Studies

Hansson, Peter January 2003 (has links)
<p>In this thesis the sink-effect in indoor materials wasstudied using mathematical modelling and experimental studies.The sink-effect is a concept which is commonly used tocharacterise the ability of different indoor materials to sorbcontaminants present in the indoor air. The sorption process ismore or less reversible, i.e. molecules sorbed in materials athigh contaminant concentrations may again be desorbed at lowerconcentrations. Knowledge of the sorption capacity of materialsand the rate at which sorption and desorption takes place is offundamental importance for mathematical simulation of indoorair quality. The aim of this work is to contribute withknowledge about how the sink-effect can be described inmathematical terms and how the interaction parametersdescribing the sorption capacity and sorption/desorptionkinetics can be determined. The work has been of amethodological nature. The procedure has been to set upphysically sound mathematical models of varying complexity andto develop small-scale chamber experiments. Two differentdynamic chamber methods have been used. One is based on amodified standard FLEC-chamber while the other uses a chamberwith two compartments, one on each side of the material. The"twin-compartment" method was designed due to the observationthat the contaminant readily permeated straight through theselected materials, which resulted in uncontrolled radiallosses in the FLEC-chamber. In order to be useful forcomparison between experiments and calculations and parameterfitting, the boundary conditions in the chambers must beprecisely known and controlled. This matter has shown to be themost crucial and difficult problem in the research. A varietyof mathematical models for the sink-effect have been proposed.In some models advanced fluid simulations were used in order totest the influence ofill-defined flow boundary conditions. Theaim of the modelling is to find a formulation with a minimum ofinteraction parameters, which is generally useful, i.e. both insmall-scale laboratory environments and in full-scale like anoffice room. Estimated model parameters are shown to be able toyield a reasonably good fit to experimental data for thesorption process but a less satisfactory fit for the desorptionprocess.</p><p><b>Keywords:</b>sink-effect, sorption, adsorption, diffusion,indoor air quality, volatile organic compounds, VOC,contaminants, building materials</p>
155

Derivitives of petroleum hydrocarbons upon reaction with hydrogen peroxide (H₂O₂) in a laboratory environment

Buell, Nancy Rebecca, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Geosciences. / Title from title screen. Includes bibliographical references.
156

Kinetic and physic models of secondary organic aerosol formation and their application to Houston conditions

Dechapanya, Wipawee 28 August 2008 (has links)
Not available / text
157

Biodegradation of paint VOC mixtures in biofilters

Park, Jung Su 28 August 2008 (has links)
Not available / text
158

Indoor air quality in retail stores

Rhodes, Joshua Daniel 07 July 2011 (has links)
Retail stores are understudied given the energy, occupant health, and potential sales impacts associated with poor indoor air quality (IAQ). There is also evidence of elevated pollutants in retail environments. This thesis is an exploration of the indoor air quality of retail stores. The first section of this thesis is a literature review on field investigations of the indoor air quality in retail buildings. Sixteen investigations report different measurements in 17 specific types of retail environments. Measurements vary depending on the specific investigation, but include VOCs, SVOCs, particles, microbiological species, and radon. When reported, indoor to outdoor ratios of almost all pollutants are greater than unity, suggesting the importance of indoor sources in retail environments. The second section of this thesis is an analysis of the whole store net emission factor for different retail environments. From the types of pollutants found in the retail store investigations, VOCs were the only pollutant group studied frequently enough to merit this analysis. The final section is an analysis of the potential for pollutant remediation strategies. Two methods, increasing air change rate and air cleaning, are considered with an analysis of the energy penalties associated with each. / text
159

Contaminant Migration Through Soil-Cement Materials

Goreham, Vincent 21 March 2014 (has links)
To assess the long-term performance of soil-cement materials used in source-control remediation methods (i.e. cement-based solidification/stabilization), procedures to measure or estimate contaminant migration parameters are essential. Previous research indicates that diffusion may be an important mechanism in contaminant transport through soil-cement materials. However, there is a paucity of information regarding the diffusion of contaminants through these materials. The development of a single-reservoir diffusion apparatus and methodology to assess the effective diffusion coefficient (De) and effective porosity (ne) of dissolved, conservative, inorganic chemicals for saturated, cured, monolithic soil-cement specimens is discussed. This is the only study known to investigate these parameters for these materials. The results of tritiated water diffusion tests on 14 different soil-cement mixtures are presented and the influence of curing time and mixture properties such as water-to-cement ratio, cement content, and grain-size distribution are examined. Results suggest that, to determine reasonable assessments of the longer-term parameters, soil-cement samples should be cured for a minimum of 70 days before commencing diffusion testing. Values of ne (0.21 to 0.41) and De (2.50×10-10 m2/s to 7.0×10-10 m2/s) determined are similar to those previously determined for a number other low-hydraulic conductivity materials (i.e. saturated inactive clays). The water content of the initial mixture is shown to have a substantial effect on the diffusive properties as the results indicate that both the total porosity (n) and the effective porosity, ne, generally increase with increasing initial water content. For the range of soils used in this investigation, grain-size distribution did not have a substantial effect on the values of ne or De determined from diffusion testing. The adaptation of a double-reservoir diffusion testing apparatus and methodology to evaluate the distribution coefficient (Kd) and De of organic contaminants is also presented. This apparatus is used to evaluate Kd and De of benzene, ethylbenzene, naphthalene, and trichloroethylene for three soil-cement mixtures. Values of Kd (0 to 2.5 cm3/g depending on the compound and soil-cement mixture tested) determined from diffusion testing, batch testing, and theoretical estimates from the literature were in general agreement. Values of De for the organic compounds ranged from 1.50×10-10 to 3.0×10-10 m2/s.
160

Studies involving potential chemical attractants from Rudbeckia hirta inflorescences

Simpson, Ashley N. 24 July 2010 (has links)
Our research involves the isolation and identification of the possible chemical compounds in black-eyed Susans that may be responsible for the olfactory attraction of the crab spider Misumenoides formosipes to the inflorescences of these plants. In olfactometric bioassays, 80% of 30 male spiders moved towards olfactory-only cues from R. hirta inflorescences over a water control (P = 0.0014). The bulk extract was separated using flash column chromatography (silica column) with a series of solvents. Spiders in olfactometer bioassays showed a significant preference for the fractions collected using 100% dichloromethane over the solvent-only control (P=0.039). The 100% dichloromethane pooled fractions were separated using solid phase extraction (SPE). Three compounds were isolated and identified using TLC, infrared and NMR spectroscopy. Two compounds were identified as contaminants, di(2-ethylhexyl) phthalate and erucamide, found in the flash column chromatography apparatus and SPE apparatus, respectively. A long-chain crystalline hydrocarbon wax was extracted from R. hirta inflorescences. Research shows that several insects use the lipids of the wax layer, specifically various long-chain alkanes and alcohols, as cues in host plant selection or as kairomones, chemical cues used in communication from one organism to another [3]. It also shows that the waxes can act as absorbents or release agents for biologically active material. Thus, the long-chain hydrocarbon wax interacting with the volatile components could play a major role in attracting the male crab spiders to the R. hirta inflorescences / Introduction and background -- Olfactory bioassay studies of M. formosipes -- Chromatographic separation of components in the 100% dichloromethane fractions -- Identification of the possible attractants in the 100% dichloromethane fractions using spectroscopic methods. / Department of Chemistry

Page generated in 0.0544 seconds