• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of hippocampal networks revealed by voltage sensitive dye imaging / Dynamiques des réseaux hippocampiques révélées par imagerie de coloration sensible au potentiel (VSDI)

Colavita, Michelangelo 18 December 2015 (has links)
Dans le but de mieux comprendre le fonctionnement du cerveau nous devons examiner les domaines structuraux qui le composent, de la simple cellule à des régions entières du cerveau interconnectées. Cependant, bien que le fonctionnement d’une ou plusieurs cellules soit relativement bien connu, il n’y a que peu d’informations concernant les groupements de neurones interagissant fonctionnellement dans une même tâche, les réseaux neuronaux. De plus, l'activité équilibrée et concertée des réseaux excitateurs et inhibiteurs joue un rôle clé pour les intégrations corticales appropriées. Par ailleurs, il existe plusieurs outils afin d’enregistrer l’activité des réseaux excitateurs, ce qui n’est pas le cas pour les réseaux inhibiteurs. L’imagerie du colorant sensible au voltage (VSDI) est une technique permettant l’enregistrement de l’activité neuronale au moyen d’une émission de fluorescence proportionnelle au changement de potentiel de membrane. Par rapport aux autres techniques employant des électrodes, le VSDI permet l’enregistrement non invasif de l’activité de centaines de sites en même temps. Au cours des dernières décennies, le VSDI a été largement utilisé tant in vitro qu’in vivo pour étudier l’activité d’une cellule et des réseaux excitateurs. Néanmoins, en utilisant le VSDI, les recherches quant à l’activité des réseaux excitateurs ont été principalement réalisées par quantification d’émission de fluorescence en définissant des régions d’intérêts à des temps fixes, alors que l’activité inhibitrice n’a été évaluée qu’à l’échelle cellulaire. La première approche ne permet pas l’obtention de toutes les informations de la dynamique de propagation de la transmission glutamatergique du fait qu’elle ne prend en considération ni la vitesse ni la direction de propagation du signal. En revanche, la seconde approche n’offre pas la possibilité d’étudier l’activité du réseau inhibiteur ce qui serait toutefois important de définir du fait de la propagation spatiale extensive des interneurones au sein des aires corticales. Durant mon doctorat, le but de mon travail a été d’étudier en détail les réseaux neuronaux excitateurs et inhibiteurs de l’aire CA1 de l’hippocampe de souris à l’aide du VSDI. Pour les étudier de façon plus compréhensive, en collaboration avec une équipe de mathématicien, nous avons développé un algorithme permettant de mesurer la vitesse et la direction de propagation du signal VSDI, ce qui représente une nouvelle méthode pour analyser le flux optique. Après la validation réussie de l’algorithme avec des données de substitution pour tester sa précision, nous avons analysé deux séries d’expériences dans lesquelles l’activité des réseaux excitateurs a été manipulée soit par augmentation de l’intensité de stimulation passant de 10 à 30 Volts ou en bloquant la transmission GABAergique avec la picrotoxine, un antagoniste du récepteur GABAA. Les résultats de ces manipulations montrent une diminution significative de la vitesse alors que l’application de picrotoxine modifie de façon significative la direction de propagation, ce qui rend le signal de dépolarisation médié par le VSDI moins dispersé par rapport au contrôle. L’utilisation du VSDI a permis l’entière caractérisation des signaux hyperpolarisants médiés par les récepteurs GABAA dans toutes les sous-couches de CA1 (champ IPSP), offrant ainsi une nouvelle façon d’étudier les événements inhibiteurs à l’échelle d’un réseau. De plus, j’ai montré qu’en activant les récepteurs mGluR5, j’étais capable d’augmenter de façon durable le champ IPSP du VSDI, avec la durée et l’ampleur au niveau des sous-couches spécifiques de CA1. Globalement, je présente dans cette thèse de nouvelles méthodes et nouveaux résultats qui peuvent représenter une avancée dans la quête d’une meilleure compréhension des réseaux neuronaux, excitateurs et inhibiteurs, ce qui, espérons-le, pourra contribuer à réduire l’écart de connaissance entre l’activité d’une seule cellule et celle du comportement. / In order to better understand brain functioning we need to investigate all the structural domains present in it, from single cell to interconnected entire brain regions. However, while our knowledge in terms of single/few cells functioning is vast, very little is known about neuronal networks, which are interacting collections of neurons functionally related to the same task. Moreover, the balanced and concerted activity of excitatory and inhibitory networks plays a key role for proper cortical computations. However, while exist several tools to record excitatory networks activity, this is not the case for inhibitory networks. Voltage sensitive dye imaging (VSDI) is a technique that allows the recording of neuronal activity by mean of proportional emission of fluorescence according to changes in membrane potential. The advantage of using VSDI over other recording techniques using electrodes is that VSDI allows not invasive recording of neuronal activity from hundreds of sites at the same time. During my doctoral course I aimed at studying in detail excitatory and inhibitory neuronal networks in the CA1 area of mouse hippocampus with VSDI. To study excitatory networks more comprehensively, in collaboration with a team of mathematicians, we developed a mathematical algorithm that allowed measuring the velocity and the direction of spreading of the VSDI signal and it represents a new method to determine an optical flow. After successful validation of the algorithm with surrogate data to test its accuracy, we analysed two set of experiments in which network excitatory activity has been manipulated either by increasing Schaffer’s collaterals stimulation intensity or by blocking GABAergic transmission with the GABAA receptor antagonist picrotoxin in order to increase the depolarization in the CA1 region of the hippocampus. The results of these manipulations significantly decreased signal velocity whereas picrotoxin application significantly modified the direction of spreading, making the depolarization-mediated VSDI signal less dispersed compared to control. Using VSDI I was able to fully characterize GABAA receptor-mediated hyperpolarizing signals in all the CA1 sublayers (field IPSPs), thus providing a new way of monitoring inhibitory events at network level. Moreover, I found that the activation of mGluR5 receptors induced an increase in a long-lasting manner of the VSDI-recorded field IPSPs, with duration and magnitude that relied on the specific CA1 sublayer considered. Overall, my work shows new methodologies and new findings that may represent a step forward in the quest for a better understanding of neuronal networks, both excitatory as well as inhibitory, which hopefully can contribute to reduce the gap of knowledge between single cell activity and behaviour.
2

Distortions in Perceived Direction of Motion Predicted by Population Response in Visual Cortex

Wu, Wei January 2009 (has links)
<p>The visual system is thought to represent the trajectory of moving objects in the activity of large populations of cortical neurons that respond preferentially to the direction of stimulus motion. Here I employed in vivo voltage sensitive dye (VSD) imaging to explore how abrupt changes in the trajectory of a moving stimulus impact the population coding of motion direction in ferret primary visual cortex (V1). For motion in a constant direction, the peak of the cortical population response reliably signaled the stimulus trajectory; but for abrupt changes in motion direction, the peak of the population response departed significantly from the stimulus trajectory in a fashion that depended on the size of the direction deviation. For small direction deviation angles, the peak of the active population shifted from values consistent with the initial direction of motion to those consistent with the final direction of motion by progressing smoothly through intermediate directions not present in the stimulus. In contrast, for large direction deviation angles, peak values consistent with the initial motion direction were followed by: a small deviation away from the final motion direction, a rapid 180° jump, and a gradual shift to the final direction. These departures of the population response from the actual trajectory of the stimulus predict specific misperceptions of motion direction that were confirmed by human psychophysical experiments. I conclude that cortical dynamics and population coding mechanisms combine to place constraints on the accuracy with which abrupt changes in direction of motion can be represented by cortical circuits.</p> / Dissertation
3

Identification and control of neural circuit dynamics for natural and surrogate inputs in-vivo

Millard, Daniel C. 08 June 2015 (has links)
A principal goal of neural engineering is to control the activation of neural circuits across space and time. The ability to control neural circuits with surrogate inputs is needed for the development of clinical neural prostheses and the experimental interrogation of connectivity between brain regions. Electrical stimulation provides a clinically viable method for activating neural tissue and the emergence of optogenetic stimulation has redefined the limitations on stimulating neural tissue experimentally. However, it remains poorly understood how these tools activate complex neural circuits. The goal of this proposed project was to gain a greater understanding of how to control the activity of neural circuits in-vivo using a combination of experimental and computational approaches. Voltage sensitive dye imaging was used to observe the spatiotemporal activity within the rodent somatosensory cortex in response to systematically varied patterns of sensory, electrical, and optogenetic stimulation. First, the cortical response to simple patterns of sensory and artificial stimuli was characterized and modeled, revealing distinct neural response properties due to the differing synchrony with which the neural circuit was engaged. Then, we specifically designed artificial stimuli to improve the functional relevance of the resulting downstream neural responses. Finally, through direct optogenetic modulation of thalamic state, we demonstrate control of the nonlinear propagation of neural activity within the thalamocortical circuit. The combined experimental and computational approach described in this thesis provides a comprehensive description of the nonlinear dynamics of the thalamocortical circuit to surrogate stimuli. Together, the characterization, modeling, and overall control of downstream neural activity stands to inform the development of central nervous system sensory prostheses, and more generally provides the initial tools and framework for the control of neural activity in-vivo.
4

Validation of a voltage-sensitive dye (di-4-ANEPPS)-based method for assessing drug-induced delayed repolarisation in Beagle dog left ventricular midmyocardial myocytes

Hardy, Matthew E., Pollard, C.E., Small, B.G., Bridgland-Taylor, M., Woods, A.J., Valentin, J.-P., Abi-Gerges, N. January 2009 (has links)
No / Evaluation of drug candidates in in-vitro assays of action potential duration (APD) is one component of preclinical safety assessment. Current assays are limited by technically-demanding, time-consuming electrophysiological methods. This study aimed to assess whether a voltage-sensitive dye-based assay could be used instead. Methods Optical APs were recorded using di-4-ANEPPS in electrically field stimulated Beagle left ventricular midmyocardial myocytes (LVMMs). Pharmacological properties of di-4-ANEPPS on the main cardiac ion channels that shape the ventricular AP were investigated using IonWorks™ and conventional electrophysiology. Effects of 9 reference drugs (dofetilide, E4031, d-sotalol, ATXII, cisapride, terfenadine, alfuzosin, diltiazem and pinacidil) with known APD-modulating effects were assessed on optically measured APD at 1 Hz. Results Under optimum conditions, 0.1 μM di-4-ANEPPS could be used to monitor APs paced at 1 Hz during nine, 5 s exposures without altering APD. di-4-ANEPPS had no effect on either hIERG, hINa, hIKs and hIto currents in transfected CHO cells (up to 10 µM) or ICa,L current in LVMMs (at 16 µM). di-4-ANEPPS had no effect on APs recorded with microelectrodes at 1 or 0.5 Hz over a period of 30 min di-4-ANEPPS displayed the sensitivity to record changes in optically measured APD in response to altered pacing frequencies and sequential vehicle additions did not affect the optically measured APD. APD data obtained with 9 reference drugs were as expected except (i) d-sotalol-induced increases in duration were smaller than those caused by other IKr blockers and (ii) increases in APD were not detected using low concentrations of terfenadine. Discussion Early in drug discovery, the di-4-ANEPPS-based method can reliably be used to assess drug effects on APD as part of a cardiac risk assessment strategy.
5

Lier l'activité de population de neurones du cortex visuel primaire avec le comportement oculomoteur : des saccades de fixation à V1, et de V1 à la réponse de suivi oculaire

Montardy, Quentin 20 December 2012 (has links)
Nous avons analysé l'activité de population au sein du cortex visuel primaire en vue de comprendre (i) les mécanismes mis en jeu lors de l'intégration de l'information visuelle suite à un mouvement oculaire, et inversement (ii) de l'influence du traitement effectué au niveau de V1 sur la génération d'un mouvement oculaire.1. Nous avons enregistré des saccades de fixation, et mis en relation, essai par essai, ces mouvements avec la représentation de la position d'un stimulus local dans V1. Après une saccade de fixation, l'activité se déplace de façon cohérente dans V1. Le décours temporel des réponses au niveau des foyers pre- et post-saccadiques montre une dynamique biphasique. La taille du foyer d'activité augmente. Nous proposons que le comportement des populations de neurones s'explique par deux phénomènes principaux : (i) La réponse suppressive précoce attribuable à la décharge corollaire (ii) de connections latérales qui réactiveraient le foyer pre-saccadique.2. Nous avons enregistré l'OFR, et cherché à savoir si la réponse de V1 l'influençait. Les latences VSD précèdent les latences OFR. Il n'existe pas de corrélation à l'essai unique. Nous avons montré que la force et la dynamique des réponses de V1 n'étaient pas prédictives de l'OFR. La distance de la périphérie à un effet sur la réponse VSD, mais pas sur l'OFR. La dynamique de propagation de cette suppression, nous avons montré deux phases : une précoce sur l'ensemble de la carte, et une plus périphérique tardive. Nous proposons que la suppression précoce soit originaire de projections en retour de structures comme MT et MST, alors que la suppression plus lente s'explique par les connections horizontales. / We analyzed population activity in V1 to understand (i) the consequence of eye movements on integration of visual information, and (ii) the influence of the processing performed at the level of V1 on the generation of eye movements.1. We recorded fixational saccades, relating, trial-by-trial, these eye movements with the representation of the position of a local stimulus in V1. After a fixational saccade, activity moves consistently in V1. However, the time-course of responses display a biphasic dynamic. This results in a global increase of the extent of cortical activity representing the local stimulus. We propose that the behavior of populations of neurons studied is explained by the contribution of two main phenomena: (i) an early suppressive response that could be attributed to the corollary discharge and (ii) the lateral connections generating lateral interactions between pre and post-saccadic lci of activity.2. We recorded the ocular following response, determining whether the response of V1 influences the oculomotor response. We studied the contrast response function of the population V1 activity and the OFR. The dynamics of CRF for a local stimulus are similar and shifted in time. We found no correlations between the single trial latencies between V1 and the OFR. At the chosen scale, surround suppression was found to be distance-dependent only in V1. The dynamics of the surround suppression shows two phases: an early suppression present over a wide cortical area, and a later peripheral spread. We propose that the early surround suppression originates from feedback from MT and MST, while the later is explained by the horizontal connections.
6

Diabetes impairs cortical map plasticity and functional recovery following ischemic stroke

Sweetnam-Holmes, Danielle 19 December 2011 (has links)
One of the most common risk factors for stroke is diabetes. Diabetics are 2 to 4 times more likely to have a stroke and are also significantly more likely to show poor functional recovery. In order to determine why diabetes is associated with poor stroke recovery, we tested the hypotheses that diabetes either exacerbates initial stroke damage, or inhibits neuronal circuit plasticity in surviving brain regions that is crucial for successful recovery. Type 1 diabetes was chemically induced in mice four weeks before receiving a targeted photothrombotic stroke in the right forelimb somatosensory cortex to model a chronic diabetic condition. Following stroke, a subset of diabetic mice were treated with insulin to determine if controlling blood glucose levels could improve stroke recovery. Consistent with previous studies, one behavioural test revealed a progressive improvement in sensory function of the forepaw in non-diabetic mice after stroke. By contrast, diabetic mice treated with and without insulin showed persistent deficits in sensori-motor forepaw function. To determine whether these different patterns of stroke recovery correlated with changes in functional brain activation, forepaw evoked responses in the somatosensory cortex were imaged using voltage sensitive dyes at 1 and 14 weeks after stroke. In both diabetic and non-diabetic mice that did not have a stroke, brief mechanical stimulation of the forepaw evoked a robust and near simultaneous depolarization in the primary (FLS1) and secondary somatosensory (FLS2) cortex. One week after stroke, forepaw-evoked responses had not been remapped in the peri-infarct cortex in both diabetic and non-diabetic mice. Fourteen weeks after stroke, forepaw evoked responses in non-diabetic mice re-emerged in the peri-infarct cortex whereas diabetic mice showed very little activation, reminiscent of the 1 week recovery group. Moreover, controlling hyperglycemia using insulin therapy failed to restore sensory evoked responses in the peri-infarct cortex. In addition to these differences in peri-infarct responsiveness, we discovered that stroke was associated with increased responsiveness in FLS2 of non-diabetic, but not diabetic or insulin treated mice. To determine the importance of FLS2 in stroke recovery, we silenced the FLS2 cortex and found that it re-instated behavioural impairments in stroke recovered mice, significantly more so than naïve mice that still had a functioning FLS1. Collectively, these results indicate that both diabetes and the secondary somatosensory cortex play an important role in determining the extent of functional recovery after ischemic cortical stroke. Furthermore, the fact that insulin therapy after stroke did not normalize functional recovery, suggests that prolonged hyperglycemia (before stroke) may induce pathological changes in the brain’s circulation or nervous system that cannot be easily reversed. / Graduate
7

OPTICAL IMAGING OF EMBRYONIC CARDIAC CONDUCTION

Ma, Pei 13 September 2016 (has links)
No description available.
8

A Signal Processing Approach to Voltage-Sensitive Dye Optical Imaging / Une approche mathématique de l'imagerie optique par colorant potentiométrique

Raguet, Hugo 22 September 2014 (has links)
L’imagerie optique par colorant potentiométrique est une méthode d’enregistrement de l’activité corticale prometteuse, mais dont le potentiel réel est limité par la présence d’artefacts et d’interférences dans les acquisitions. À partir de modèles existant dans la littérature, nous proposons un modèle génératif du signal basé sur un mélange additif de composantes, chacune contrainte dans une union d’espaces linéaires déterminés par son origine biophysique. Motivés par le problème de séparation de composantes qui en découle, qui est un problème inverse linéaire sous-déterminé, nous développons : (1) des régularisations convexes structurées spatialement, favorisant en particulier des solutions parcimonieuses ; (2) un nouvel algorithme proximal de premier ordre pour minimiser efficacement la fonctionnelle qui en résulte ; (3) des méthodes statistiques de sélection de paramètre basées sur l’estimateur non biaisé du risque de Stein. Nous étudions ces outils dans un cadre général, et discutons leur utilité pour de nombreux domaines des mathématiques appliqués, en particulier pour les problèmes inverses ou de régression en grande dimension. Nous développons par la suite un logiciel de séparation de composantes en présence de bruit, dans un environnement intégré adapté à l’imagerie optique par colorant potentiométrique. Finalement, nous évaluons ce logiciel sur différentes données, synthétiques et réelles, montrant des résultats encourageants quant à la possibilité d’observer des dynamiques corticales complexes. / Voltage-sensitive dye optical imaging is a promising recording modality for the cortical activity, but its practical potential is limited by many artefacts and interferences in the acquisitions. Inspired by existing models in the literature, we propose a generative model of the signal, based on an additive mixtures of components, each one being constrained within an union of linear spaces, determined by its biophysical origin. Motivated by the resulting component separation problem, which is an underdetermined linear inverse problem, we develop: (1) convex, spatially structured regularizations, enforcing in particular sparsity on the solutions; (2) a new rst-order proximal algorithm for minimizing e›ciently the resulting functional; (3) statistical methods for automatic parameters selection, based on Stein’s unbiased risk estimate.We study thosemethods in a general framework, and discuss their potential applications in variouselds of applied mathematics, in particular for large scale inverse problems or regressions. We develop subsequently a soŸware for noisy component separation, in an integrated environment adapted to voltage-sensitive dye optical imaging. Finally, we evaluate this soŸware on dišerent data set, including synthetic and real data, showing encouraging perspectives for the observation of complex cortical dynamics.
9

Spatiotemporal properties of sensory integration in the mouse barrel cortex / Propriétés spatiotemporelles de l’intégration sensorielle dans le cortex à tonneaux de la souris

Vilarchao, María Eugenia 27 November 2015 (has links)
Lorsque les rongeurs explorent leur environnement, ils contactent activement les objets environnants avec leurs vibrisses qui sont ainsi défléchies selon des séquences spatiotemporelles complexes. Le système vibrissal est néanmoins capable d'extraire des informations pertinentes de ces stimulations pour générer un comportement tactile-dépendant. Une question se pose alors: Comment l’information multivibrissale globale est-elle encodée? La représentation corticale des vibrisses au sein du cortex somatosensoriel primaire (S1) du rongeur est dotée de structures anatomiquement remarquables, nommées "tonneaux", au niveau de la couche IV, qui sont organisées de la même manière que les vibrisses sur le museau de l’animal. A chaque "tonneau" correspond une colonne corticale, unité de traitement de l’information, qui reçoit en priorité les informations provenant la vibrisse principale (VP) correspondante. Des enregistrements extracellulaires réalisés dans notre équipe chez le rat ont révélé que les réponses des neurones du cortex S1 et du thalamus sont non seulement sensibles à la direction de déflection locale de leur VP, mais aussi à la direction d'un mouvement global de l’ensemble de leurs vibrisses. Afin de mieux comprendre la manière dont le réseau cortical traite ces scènes tactiles globales, nous avons construit un poste expérimental permettant d’enregistrer en temps réel l’activité du cortex S1 chez la souris par imagerie sensible au potentiel, tout en appliquant des stimuli tactiles complexes à l'aide d'une matrice de 24-stimulateurs vibrissaux. Nous avons de plus développé une méthode permettant d’aligner les données fonctionnelles ainsi obtenues par rapport la carte cytoarchitecturale du réseau cortical sous-jacent. Nous avons ainsi étudié premièrement la distribution spatiale de la sélectivité à la direction de déflection locale d’une vibrisse au niveau d’une colonne corticale. Les réponses aux différentes directions étaient localisées de manière légèrement distincte, autour du centre de la colonne, mais selon une organisation différente de celle précédemment décrite chez le rat. Nous avons montré par la suite que la sélectivité à la direction globale est spatialement organisée dans le cortex "en tonneaux" à l’échelle supra-colonnaire. Les colonnes correspondant aux vibrisses rostrales étant plus sélectives à la direction globale que les colonnes associées aux vibrisses caudales. En outre, les colonnes correspondant aux vibrisses dorsales répondent préférentiellement aux directions globales ventrales, tandis que les colonnes associées aux vibrisses ventrales répondent préférentiellement aux directions globales caudales. Enfin, les réponses induites par des directions globales caudo-ventrales étaient en moyenne les plus fortes pour toutes les colonnes. Nous avons montré que la répartition spatiale de la sélectivité à la direction globale peut être expliquée ni par la saillance prédominante de la position de départ de la séquence de stimulation multivibrissale (effet de bord), ni par la sommation linéaire des réponses aux déflections de quelques vibrisses. Les réponses aux stimulations globales de l'ensemble des vibrisses sont en effet fortement sous-linéaires, indépendamment de la direction de la stimulation. Brièvement, nous montrons ici que sortir de la vision classique du système vibrissal permet une meilleure compréhension de la façon dont les différentes caractéristiques des stimuli complexes sont traitées et de la manière dont les propriétés émergentes du cortex, comme la sélectivité à la direction globale, sont construites. / While rodents explore their environment they actively contact surrounding objects with their array of whiskers, resulting in a complex pattern of multiwhisker deflections. Despite this complexity, the whisker system is able to extract relevant information from the spatiotemporal sequence of deflections to generate touch-dependent behavior. The question that arises is: How is global multiwhisker information encoded? Whiskers are mapped onto layer 4 of the primary somatosensory cortex (S1) as discrete units named “barrels”. Each barrel-related vertical column processes information coming primarily from its corresponding principal whisker (PW). Previous experiments in our lab done with extracellular recordings have revealed that neurons in the rat S1 and thalamus not only show a preferred direction for the local deflection of the PW but also for the direction of a global motion across the whisker pad. To further understand how the cortical network processes global tactile scenes, we built a set-up that enables to perform voltage sensitive dye imaging of the mouse barrel cortex while applying precise tactile stimuli using a 24-multi-whisker stimulator. We further developed a technical method to map the recorded functional data onto the cortical structure. We first studied whether local direction selectivity is spatially distributed within the barrel-related column. Responses to different directions were slightly segregated on space close to the barrel center, but the distribution differed from the one previously described in rat S1, namely a pinwheel-like structure. We then showed that global direction selectivity is spatially organized in the barrel cortex. Columns related to rostral whiskers were more selective to the global direction than columns related to caudal whiskers. Moreover, the columns related to dorsal whiskers preferred ventral global directions, while the columns related to ventral whiskers preferred caudal global directions. Overall the responses to the caudo-ventral global directions were the strongest in average for all the columns. We showed that the spatial distribution of the global direction selectivity can be explained neither by the high salience of the starting position of the deflections on the whiskerpad (a border effect), nor by the linear summation of the responses to deflections of several whiskers. Responses to the global motion of the whisker array are indeed highly sublinear independently of the direction of stimulation. In conclusion, we show here that stepping aside from the classical view of the whisker-to-barrel cortex system allows a better understanding of how different features of complex stimuli are processed and how the emergent properties of the cortex, like the global direction selectivity, are built-up.
10

Sensory Integration under Natural Conditions: a Theoretical, Physiological and Behavioral Approach

Onat, Selim 02 September 2011 (has links)
We can affirm to apprehend a system in its totality only when we know how it behaves under its natural operating conditions. However, in the face of the complexity of the world, science can only evolve by simplifications, which paradoxically hide a good deal of the very mechanisms we are interested in. On the other hand, scientific enterprise is very tightly related to the advances in technology and the latter inevitably influences the manner in which the scientific experiments are conducted. Due to this factor, experimental conditions which would have been impossible to bring into laboratory not more than 20 years ago, are today within our reach. This thesis investigates neuronal integrative processes by using a variety of theoretical and experimental techniques wherein the approximation of ecologically relevant conditions within the laboratory is the common denominator. The working hypothesis of this thesis is that neurons and neuronal systems, in the sensory and higher cortices, are specifically adapted, as a result of evolutionary processes, to the sensory signals most likely to be received under ecologically relevant conditions. In order to conduct the present study along this line, we first recorded movies with the help of two microcameras carried by cats exploring a natural environment. This resulted in a database of binocular natural movies that was used in our theoretical and experimental studies. In a theoretical study, we aimed to understand the principles of binocular disparity encoding in terms of spatio-temporal statistical properties of natural movies in conjunction with simple mathematical expressions governing the activity levels of simulated neurons. In an unsupervised learning scheme, we used the binocular movies as input to a neuronal network and obtained receptive fields that represent these movies optimally with respect to the temporal stability criterion. Many distinctive aspects of the binocular coding in complex cells, such as the phase and position encoding of disparity and the existence of unbalanced ocular contributions, were seen to emerge as the result of this optimization process. Therefore we conclude that the encoding of binocular disparity by complex cells can be understood in terms of an optimization process that regulates activities of neurons receiving ecologically relevant information. Next we aimed to physiologically characterize the responses of the visual cortex to ecologically relevant stimuli in its full complexity and compare these to the responses evoked by artificial, conventional laboratory stimuli. To achieve this, a state-of-the-art recording method, voltage-sensitive dye imaging was used. This method captures the spatio-temporal activity patterns within the millisecond range across large cortical portions spanning over many pinwheels and orientation columns. It is therefore very well suited to provide a faithful picture of the cortical state in its full complexity. Drifting bar stimuli evoked two major sets of components, one coding for the position and the other for the orientation of the grating. Responses to natural stimuli involved more complex dynamics, which were locked to the motion present in the natural movies. In response to drifting gratings, the cortical state was initially dominated by a strong excitatory wave. This initial spatially widespread hyper-excitatory state had a detrimental effect on feature selectivity. In contrast, natural movies only rarely induced such high activity levels and the onset of inhibition cut short a further increase in activation level. An increase of 30% of the movie contrast was estimated to be necessary in order to produce activity levels comparable to gratings. These results show that the operating regime within which the natural movies are processed differs remarkably. Moreover, it remains to be established to what extent the cortical state under artificial conditions represents a valid state to make inferences concerning operationally more relevant input. The primary visual cortex contains a dense web of neuronal connections linking distant neurons. However the flow of information within this local network is to a large extent unknown under natural stimulation conditions. To functionally characterize these long-range intra-areal interactions, we presented natural movies also locally through either one or two apertures and analyzed the effects of the distant visual stimulation on the local activity levels. The distant patch had a net facilitatory effect on the local activity levels. Furthermore, the degree of the facilitation was dependent on the congruency between the two simultaneously presented movie patches. Taken together, our results indicate that the ecologically relevant stimuli are processed within a distinct operating regime characterized by moderate levels of excitation and/or high levels of inhibition, where facilitatory cooperative interactions form the basis of integrative processes. To gather better insights into the motion locking phenomenon and test the generalizability of the local cooperative processes toward larger scale interactions, we resorted to the unequalized temporal resolution of EEG and conducted a multimodal study. Inspired from the temporal properties of our natural movies, we designed a dynamic multimodal stimulus that was either congruent or incongruent across visual and auditory modalities. In the visual areas, the dynamic stimulation unfolded neuronal oscillations with frequencies well above the frequency spectrum content of the stimuli and the strength of these oscillations was coupled to the stimuli's motion profile. Furthermore, the coupling was found to be stronger in the case where the auditory and visual streams were congruent. These results show that the motion locking, which was so far observed in cats, is a phenomenon that also exists in humans. Moreover, the presence of long-range multimodal interactions indicates that, in addition to local intra-areal mechanisms ensuring the integration of local information, the central nervous system embodies an architecture that enables also the integration of information on much larger scales spread across different modalities. Any characterization of integrative phenomena at the neuronal level needs to be supplemented by its effects at the behavioral level. We therefore tested whether we could find any evidence of integration of different sources of information at the behavioral level using natural stimuli. To this end, we presented to human subjects images of natural scenes and evaluated the effect of simultaneously played localized natural sounds on their eye movements. The behavior during multimodal conditions was well approximated by a linear combination of the behavior under unimodal conditions. This is a strong indication that both streams of information are integrated in a joint multimodal saliency map before the final motor command is produced. The results presented here validate the possibility and the utility of using natural stimuli in experimental settings. It is clear that the ecological relevance of the experimental conditions are crucial in order to elucidate complex neuronal mechanisms resulting from evolutionary processes. In the future, having better insights on the nervous system can only be possible when the complexity of our experiments will match to the complexity of the mechanisms we are interested in.

Page generated in 0.0725 seconds