• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 5
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 19
  • 15
  • 14
  • 12
  • 12
  • 12
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development of Approach to Estimate Volume Fraction of Multiphase Material Using Dielectrics

Lee, Sang Ick 2010 May 1900 (has links)
Most engineering as well as pavement materials are composites composed of two or more components to obtain a variety of solid properties to support internal and external loading. The composite materials rely on physical or chemical properties and volume fraction of each component. While the properties can be identified easily, the volume fraction is hard to be estimated due to the volumetric variation during the performance in the field. Various test procedures have been developed to measure the volume fractions; however, they depend on subjective determination and judgment. As an alternative, electromagnetic technique using dielectric constant was developed to estimate the volume fraction. Empirical and mechanistic approaches were used to relate the dielectric constant and volume fraction. While the empirical models are not very accurate in all cases, the mechanistic models require assumptions of constituent dielectric constants. For those reasons, the existing approaches might produce less accurate estimate of volume fraction. In this study, a mechanistic-based approach using the self consistent scheme was developed to be applied to multiphase materials. The new approach was based on calibrated dielectric constant of components to improve results without any assumptions. Also, the system identification was used iteratively to solve for dielectric parameters and volume fraction at each step. As the validation performed to verify the viability of the new approach using soil mixture and portland cement concrete, it was found that the approach has produced a significant improvement in the accuracy of the estimated volume fraction.
22

Experiments on two-phase flow in a vertical tube with a moveable obstacle

Prasser, H.-M., Beyer, M., Carl, H., Al Issa, S., Schütz, P., Pietruske, H. 31 March 2010 (has links) (PDF)
A novel technique to study the two-phase flow field around an asymmetric diaphragm in a vertical pipe is presented, that enables producing data for CFD code validation in complex geometries. Main feature is a translocation of the diaphragm to scan the 3D void field with a stationary wire-mesh sensor. Besides the measurement of time-averaged void fraction fields, a novel data evaluation method was developed to extract estimated liquid velocity profiles from the wire-mesh sensor data. The flow around an obstacle of the chosen geometry has many topological similarities with complex flow situations in bends, T-junctions, valves, safety valves and other components of power plant equipment and flow phenomena like curved stream lines, which form significant angles with the gravity vector, flow separation at sharp edges and recirculation zones in their wake are present. In order to assess the quality of the CFD code and their underlying multiphase flow and turbulence models pre-test calculations by ANSYS CFX 10.0 were carried out. A comparison between the calculation results and the experimental data shows a good agreement in term of all significant qualitative details of the void fraction and liquid velocity distributions. Furthermore, the report contains a method to assess the lateral components of bubble velocities in the form of a basic theoretical description and visualisation examples. The plots show the deviation of the flow around the obstacle in term of vectors represented the average velocities of the instantaneous cross-sections of all bubbles in the time interval when they pass the measuring plane. A detailed uncertainty analyse of the velocity assessments concludes the presented report. It includes remarks about the comparison with a second method for calculating bubble velocity profiles - the cross-correlation. In addition, this chapter gives an overview about the influence of acceleration and deceleration effects on the velocity estimation.
23

Experiments on upwards gas/liquid flow in vertical pipes

Schütz, H., Pietruske, P., Manera, A., Carl, H., Beyer, M., Prasser, H.-M. 31 March 2010 (has links) (PDF)
Two-phase flow experiments at vertical pipes are much suitable for studying the action of different constitutive relations characterizing the momentum exchange at the gas/liquid interface as well as the dynamic behaviour of the gas/liquid interface itself. The flow can be observed in its movement along the pipe and, in particular, within the shear field close to the pipe wall over a considerable vertical distance and, consequently, over a comparatively long time without the immediate separation of gas and liquid characteristic for horizontal flows. Wire-mesh sensors, which were the working horse in the described experiments, supplied sequences of instantaneous two-dimensional gas fraction distributions with a high-resolution in space and time. This allows to derive from the data not only void fraction and bubble velocity profiles, but also bubble size distributions, bubble-size resolved radial gas fraction profiles as well as the axial evolution of these distributions. An interfacial surface reconstruction algorithm was developed in order to extract the extension of interfacial area from the wire-mesh sensor data. The sensors were upgraded to withstand parameters that are close to nuclear reactor conditions. Most of the experiments were performed for both air/water flow at ambient pressure and steam/water flow of up to 6.5 MPa at identical combinations of the gas and liquid superficial velocities. This offers excellent conditions for studying the influence of the fluid properties.
24

THERMAL, MAGNETIC, AND MECHANICAL STRESSES AND STRAINS IN COPPER/CYANATE ESTER CYLINDRICAL COILS – EFFECTS OF VARIATIONS IN FIBER VOLUME FRACTION

Donahue, Chance Thomas 01 August 2010 (has links)
Several problems must be solved in the construction, design, and operation of a nuclear fusion reactor. One of the chief problems in the manufacture of high-powered copper/polymer composite magnets is the difficulty to precisely control the fiber volume fraction. In this thesis, the effect of variations in fiber volume fraction on thermal stresses in copper/cyanate ester composite cylinders is investigated. The cylinder is a composite that uses copper wires that run longitudinally in a cyanate ester resin specifically developed by Composite Technology Development, Inc. This composite cylinder design is commonly used in magnets for nuclear fusion reactors. The application of this research is for magnets that use cylindrical coil geometry such as the Mega Amp Spherical Tokamak (MAST) in the UK. However, most stellarator magnet designs use complex geometries including the National Compact Stellarator Experiment (NCSX), and the Quasi-Poloidal Stellarator (QPS). Even though the actual stresses calculated for the cylindrical geometry may not be directly applicable to these projects, the relationship between fiber volume fraction and stresses will be useful for any geometry. The effect of fiber volume fraction on stresses produced by mechanical, thermal and magnetic loads on cylindrical magnet coils is studied using micromechanics with laminate plate theory (LPT) and finite element analysis (FEA).Based on the findings of this research, variations in volume fraction do significantly affect the stress experienced by the composite cylinder. Over a range of volume fractions from 0.3 to 0.5, the LPT results demonstrate that thermally induced stresses vary approximately 30% while stresses due to pressure vary negligibly. The FEA shows that magnetic stresses vary much less at around only 5%. FEA results seem to confirm the LPT model. It was also concluded that the stress in the insulation layers due to all types of loadings is significant and must be considered when using this system in fusion applications.
25

Estudo experimental da produção de fuligem em chamas laminares

Soares, Diego January 2016 (has links)
Sérios problemas ambientais têm origem em processos de combustão incompletos. Entre os produtos indesejados está a fuligem, considerada como um dos principais fatores da mudança climática observada nos último anos. Desta forma, ferramentas para diagnóstico da emissão de material particulado se fazem necessárias. Com o advento do laser, o desenvolvimento de técnicas óticas não intrusivas teve início. Dentre elas, destaca-se a técnica denominada incandescência induzida por laser (laser induced incandescence – LII), a qual pode gerar resultados resolvidos no espaço para a fração volumétrica de fuligem. Neste contexto, este trabalho apresenta um estudo experimental sobre a produção de fuligem em duas situações: na primeira, foram estudadas chamas laminares pré-misturadas de etileno e ar aplicando-se a técnica LII. Os resultados foram calibrados a partir da fração volumétrica de fuligem média empregando a técnica de extinção de luz, obtendo-se, então, resultados quantitativos espacialmente resolvidos da fração volumétrica de fuligem. A utilização de diferentes gases no escoamento anular também foi avaliada. A segunda situação abordada envolve o estudo de chamas laminares não pré-misturadas utilizando o gás natural como combustível. O impacto da diluição de inertes em diferentes proporções sobre a fração volumétrica de fuligem em diversas alturas da chama foi estudado por meio da técnica LII. Os resultados obtidos foram comparados à outros resultados presentes na literatura e servirão como validação de futuros modelos de formação de fuligem. / Serious environmental problems are assigned to incomplete combustion processes. Among the unwanted products, soot can be related as an important factor of climate changes observed in the last years. Thus, particulate material emissions diagnostic tools are necessary. Due the laser advent, the development of non-intrusive optical techniques was possible. One of the most importante technique is the laser induced incandescence, LII, which can generate spatially and temporally resolved results of soot volume fraction. In this context, an experimental study regarding the soot production was developed in two different situations: in the first one, premixed laminar flames of ethylene and air were investigated by applying the LII technique. The results were calibrated through the average of soot volume fraction results obtained by the light extinction technique. Therefore, it was possible to obtain quantitative results of spatially resolved soot volume fraction. Different gases employment at the annular flow were also evaluated. The second situation studied involves the analysis of natural gas laminar non-premixed flames. The impact of different inert gas dilution ratio on the soot volume fraction at different heights of the flame was evaluated by the LII technique. The results were compared to other authors and will serve as validation for future soot formation models.
26

Estudo experimental da produção de fuligem em chamas laminares

Soares, Diego January 2016 (has links)
Sérios problemas ambientais têm origem em processos de combustão incompletos. Entre os produtos indesejados está a fuligem, considerada como um dos principais fatores da mudança climática observada nos último anos. Desta forma, ferramentas para diagnóstico da emissão de material particulado se fazem necessárias. Com o advento do laser, o desenvolvimento de técnicas óticas não intrusivas teve início. Dentre elas, destaca-se a técnica denominada incandescência induzida por laser (laser induced incandescence – LII), a qual pode gerar resultados resolvidos no espaço para a fração volumétrica de fuligem. Neste contexto, este trabalho apresenta um estudo experimental sobre a produção de fuligem em duas situações: na primeira, foram estudadas chamas laminares pré-misturadas de etileno e ar aplicando-se a técnica LII. Os resultados foram calibrados a partir da fração volumétrica de fuligem média empregando a técnica de extinção de luz, obtendo-se, então, resultados quantitativos espacialmente resolvidos da fração volumétrica de fuligem. A utilização de diferentes gases no escoamento anular também foi avaliada. A segunda situação abordada envolve o estudo de chamas laminares não pré-misturadas utilizando o gás natural como combustível. O impacto da diluição de inertes em diferentes proporções sobre a fração volumétrica de fuligem em diversas alturas da chama foi estudado por meio da técnica LII. Os resultados obtidos foram comparados à outros resultados presentes na literatura e servirão como validação de futuros modelos de formação de fuligem. / Serious environmental problems are assigned to incomplete combustion processes. Among the unwanted products, soot can be related as an important factor of climate changes observed in the last years. Thus, particulate material emissions diagnostic tools are necessary. Due the laser advent, the development of non-intrusive optical techniques was possible. One of the most importante technique is the laser induced incandescence, LII, which can generate spatially and temporally resolved results of soot volume fraction. In this context, an experimental study regarding the soot production was developed in two different situations: in the first one, premixed laminar flames of ethylene and air were investigated by applying the LII technique. The results were calibrated through the average of soot volume fraction results obtained by the light extinction technique. Therefore, it was possible to obtain quantitative results of spatially resolved soot volume fraction. Different gases employment at the annular flow were also evaluated. The second situation studied involves the analysis of natural gas laminar non-premixed flames. The impact of different inert gas dilution ratio on the soot volume fraction at different heights of the flame was evaluated by the LII technique. The results were compared to other authors and will serve as validation for future soot formation models.
27

Numerical modelling of compressible turbulent premixed hydrogen flames

Turquand D'Auzay, Charles January 2016 (has links)
Turbulent combustion has a profound effect on the way we live our lives; homes and businesses predominantly rely on power generated by burning some form of fuel, and the vast majority of transport of passengers and cargo are driven by combustion. Fossil fuels remain readily available and relatively cheap, and so will continue to power the modern world for the foreseeable future. Combustion of fossil fuels produces emissions that detrimentally affect air quality, particularly in highly-populated cities, and are also widely believed to be contributing to global climate change. Consequently, increasing attention is being focused on alternative fuels, increased efficiency and reduced emissions. One alternative fuel is hydrogen, which introduces challenges in end-usage, storage and safety that are not encountered with more conventional fuels. Advances in computational power and software technology means that numerical simulation has a growing role in the development of combustors and safety evaluation. Despite these advances, many challenges remain; the broad range of time and length scales involved are coupled with complex thermodynamics and chemistry on top of turbulent fluid mechanics, which means that detailed simulations of even relatively-simple burners are still prohibitively expensive. Engineering turbulent flame models are required to reduce computational expense, and the challenge is to retain as much of the flow physics as possible. Furthermore, the choice of numerical approach has a significant effect on the quality of simulation, and different target applications place different demands on the numerical scheme. In the case of hydrogen explosion, the approach needs to be able to capture a range of physical behaviours including turbulence, low-speed deflagration, high-speed shock waves and potentially detonations. One such numerical approach that has enjoyed widespread success is finite volumes schemes based on the Godunov method. These methods perform well at all speeds, and have positive shock-capturing capability, but recent studies have demonstrated difficulties with numerical stability for more complex thermodynamics, specifically in the case of fully-conservative methods for multi-component fluids with varying thermodynamic properties. A recent development is the so-called double-flux method, which retains many of the positive properties of the fully-conservative approaches and does not suffer from the same numerical instabilities, but is quasi-conservative and involves additional computational expense. The present work consolidates the state-of-the-art in the literature, and considers two equation sets, based on mass fraction and volume fraction, respectively, along with fully-conservative and quasiconservative schemes. Comprehensive validation and evaluation of the different approaches is presented. It was found that both quasi-conservative approaches performed well, with a better conservative behaviour for the quasi-conservative volume fraction, but a better stability for the quasi-conservative mass fraction. Finally, the numerical tool developed is applied to turbulent combustion of premixed hydrogen in the context of the semi-confined experiments from the University of Sydney. The LES results showed an good overall agreement with the experimental data, and the critical parameters such as overpressure and flame speed where globally well captured, highlighting the large potential of LES for safety analysis.
28

CFD analýza tepelného zatížení trubkovnice / CFD analysis of thermal stress of a tubesheet

Vince, Tomáš January 2021 (has links)
This diploma thesis focuses on the phenomena of multiphase flow in a steam generator as a one of probable causes of tubes and tubesheet weld cracking. In the first part of the work, a research was carried out focusing on the boiling and the phenomenon of two-phase flow in technical applications, its characteristics and properties. The thesis continuous with an overview of available numerical multiphase models in the ANSYS Fluent 2021 R1 and a research of previously published works focused on two-phase flow with the presence of boiling. The research is followed by a description of the particular boiler, which is part of the nitric acid production plant in the chemical company DUSLO, a.s., its operating conditions and a more detailed description of the issue that is being addressed in this thesis. The second part of the work continuous with a description of the computational model, including a description of the geometry of the model and used simplifications, the computational mesh and the description of boundary conditions. Important part is the description of calculation setting of steady-state and transient CFD simulations in ANSYS Fluent. Finally, the results of the two-phase flow calculation are presented and then discussed in the conclusions.
29

Regression Analysis of Fracture Toughness for Secondary Osteons Located in Human Cortical Bone

Fetzer, Chase A 01 October 2009 (has links)
An experiment was carried out in order to locate and quantify osteon types within a sample of cortical bone taken from a human tibia. This was done using a microscope-camera assembly and the BioQuant computer software. The results of this were correlated with a previous experiment’s results on fracture toughness so that an analysis could be run on the data in order to determine the factors that most affect the value of fracture toughness of this cortical bone. Results were examined closely and the analysis repeated until the author was satisfied that the best possible model for fracture toughness had been achieved. A combination of usable parameters included: region, porosity, volume fraction of lightfield osteons, volume fraction of hooped osteons, volume fraction of dark osteons, volume fraction of alternating osteons, volume fraction total, density, average diameter total, average diameter of hooped osteons, average diameter of lightfield osteons, average diameter of darkfield osteons and average diameter of alternating osteons. This model explains the parameters that most affect fracture toughness by using a regression analysis, which also provides a regression equation to show exactly how much each specific parameter affects the fracture toughness value
30

Experiments on two-phase flow in a vertical tube with a moveable obstacle

Prasser, H.-M., Beyer, M., Carl, H., Al Issa, S., Schütz, P., Pietruske, H. January 2007 (has links)
A novel technique to study the two-phase flow field around an asymmetric diaphragm in a vertical pipe is presented, that enables producing data for CFD code validation in complex geometries. Main feature is a translocation of the diaphragm to scan the 3D void field with a stationary wire-mesh sensor. Besides the measurement of time-averaged void fraction fields, a novel data evaluation method was developed to extract estimated liquid velocity profiles from the wire-mesh sensor data. The flow around an obstacle of the chosen geometry has many topological similarities with complex flow situations in bends, T-junctions, valves, safety valves and other components of power plant equipment and flow phenomena like curved stream lines, which form significant angles with the gravity vector, flow separation at sharp edges and recirculation zones in their wake are present. In order to assess the quality of the CFD code and their underlying multiphase flow and turbulence models pre-test calculations by ANSYS CFX 10.0 were carried out. A comparison between the calculation results and the experimental data shows a good agreement in term of all significant qualitative details of the void fraction and liquid velocity distributions. Furthermore, the report contains a method to assess the lateral components of bubble velocities in the form of a basic theoretical description and visualisation examples. The plots show the deviation of the flow around the obstacle in term of vectors represented the average velocities of the instantaneous cross-sections of all bubbles in the time interval when they pass the measuring plane. A detailed uncertainty analyse of the velocity assessments concludes the presented report. It includes remarks about the comparison with a second method for calculating bubble velocity profiles - the cross-correlation. In addition, this chapter gives an overview about the influence of acceleration and deceleration effects on the velocity estimation.

Page generated in 0.0882 seconds