• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 640
  • 145
  • 128
  • 104
  • 40
  • 17
  • 14
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1386
  • 267
  • 266
  • 255
  • 248
  • 205
  • 120
  • 105
  • 102
  • 100
  • 97
  • 96
  • 81
  • 78
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Understanding and controlling vorticity transport in unsteady, separated flows

Akkala, James 01 December 2015 (has links)
Vortices interacting with the solid surface of aerodynamic bodies are prevalent across a broad range of geometries and applications, such as dynamic stall on wind turbine and helicopter rotors, the separated flows over flapping wings of insects, birds and micro-air vehicles, formation of the vortex wakes of bluff bodies, and the lift-producing vortices formed by aircraft leading-edge extensions and delta wings. This study provides fundamental insights into the formation and evolution of such vortices by considering the leading-edge vortices formed in variations of a canonical flapping wing problem. Specifically, the vorticity transport within three distinct experimental cases--2D plunging airfoil, 3D plunging airfoil and 2D plunging airfoil with suction applied at the leading edge--were analyzed in order to characterize the formation and evolution of the leading-edge vortex (LEV). Three-dimensional representations of the velocity and vorticity fields were obtained via multi-plane particle image velocimetry (PIV) measurements and used to perform a vorticity flux analysis that served to identify the sources and sinks of vorticity within the flow. Time-resolved pressure measurements were obtained from the surface of the airfoil and used to characterize the flux of vorticity diffusing from the solid surface, and a method for correcting dynamic pressure data was developed and validated for the application within the current study. Upon characterizing all of the sources and sinks of vorticity, the circulation budget was found to be fully accounted for. Interpretation of the individual vorticity balance terms demonstrated vorticity generation and transport characteristics that were consistent among all three cases that were investigated. Three-dimensional vorticity fluxes were found to be an almost negligible contributor to the overall circulation budget, mostly due to the individual terms canceling each other out. In all cases, the diffusive flux of vorticity from the surface of the airfoil was shown to act primarily as a sink of LEV vorticity, with a magnitude roughly half that of the flux of vorticity emanating from the leading-edge shear layer. Inspection of the chordwise distribution of the diffusive flux within the 2D case showed it to correlate very well with the evolution of the flow field. Specifically, the diffusive flux experienced a major increase during the phase interval in which the LEV remained attached to the downstream boundary layer. It was also noted that the accumulation of secondary vorticity near the leading edge prevented the diffusive flux from continuing to increase after the roll-up of the LEV. This result was validated within the 3D case, which demonstrated that maintaining an LEV that stays attached to the downstream boundary layer produces a larger diffusive flux of vorticity--presumably enhancing both lift and thrust. Through the use of a spanwise array of suction ports, the suction case was able to successfully alter the total circulation of the flow by removing positive vorticity from the opposite-signed vortex (OSV) that formed beneath the LEV. This removal of positive vorticity produced a measured increase in the total lift, and it was noted that weakening this region of secondary vorticity allowed the LEV to impose more suction on the surface of the airfoil. However, it was also noted that weakening the OSV resulted in a loss of thrust, which was attributed to the loss of suction that occurred near the leading edge when the removal of secondary vorticity caused the energetic OSV to be reverted into a low energy region of separated flow. The physical insights provided by this work can form the basis of novel flow control strategies for enhancing the aerodynamic loads produced in unsteady, separated flows.
402

Flow structures and aerodynamic loads of a rolling wing in a free stream

Berdon, Randall 01 May 2019 (has links)
The leading-edge vortex (LEV) is a structure found in unsteady aerodynamics that can alter the forces induced on wings and other rotating structures. This thesis presents an experimental study on LEV development on low aspect-ratio wing rolling in a uniform flow at high angles of attack. The flow structure dynamics of rotating wings in the presence of a free stream are not well understood due to the limited studies under these conditions. In this study, a broad parameter space with varying advance ratio and wing radius of gyration are analyzed using dye-visualizations. In most cases, either a conical LEV structure developed on the inboard part of the wing and persisted to a significant roll angle, as well as the arch structure. Plenoptic PIV was used to validate observations in flow visualizations as well as identify finer structures. A binary classification criterion was defined based on the formation and persistence of the inboard conical LEV structure. This criterion identified the LEV as either conical ,non-conical or transitional. Previous studies inspired the proposal of a ”rotation parameter” ,ΠRot, that was a based on a non-dimensional velocity gradient. A value of ΠRot = 0.17 was found to separate conical and non-conical LEV parameter, suggesting the fundamental importance of this parameter to LEV dynamics. Furthermore, the forces were analyzed to understand the impact of the flow structure on the forces. The conical LEVs had a transient peak followed by irregular udulations while the non-conical LEVs produced high frequency oscillations. In both cases, the force could be understood based on the time-evolution of the LEVs. Passive bleeding was considered within this study to perturb the flow. Four passive bleed configurations were experimented with at different hole locations and sizes. It was found that a hole applied near the wing root with a large diameter perturbed the flow and transformed the structure from conical to non-conical classifications. This provides a platform to further understand the flow mechanisms that govern LEV formation and evolution by drastically changing flow structures and maintaining the same geometric and kinematic parameters. Additional studies were done analyzing the changes on the forces on the wing. The lift on the passive bleeding did not seem to be affected however, the thrust was decreased to nearly 0.
403

An Investigation into Delta Wing Vortex Generators as a Means of Increasing Algae Biofuel Raceway Vertical Mixing Including an Analysis of the Resulting Turbulence Characteristics

Godfrey, Aaron H. 01 May 2012 (has links)
Algae-derived biodiesel is currently under investigation as a suitable alternative to traditional fossil-fuels. Though it possesses many favorable characteristics, algae remains prohibitively expensive to mass produce and distribute. The most economical means of growing algae are large-scale open pond raceways. These, however, suffer from low culture densities; this fact impacts the cost directly through diminished productivity, as well as indirectly by raising costs due to the necessity of dewatering low culture density raceway effluent. Algae, as a photosynthetic organism, achieves higher culture densities when sufficient light is provided. In open ponds this can be accomplished by frequently cycling algae to the raceway surface. The current work examined delta wing vortex generators as a means of instigating this cycling motion. In particular the impact of spacing and angle of attack was analyzed. These vortex generators were found to significantly increase vertical mixing when placed in a series, developing precisely the motion desired. Their impact on power requirements was also examined. Specifically it was shown that increases in spacing and decreases in angle of attack result in lower power consumption. It was demonstrated that the most efficient mixing generation is achieved by larger spacings and smaller angles of attack. The impact that these devices had on raceway turbulence as measured by dissipation rate was also investigated and compared to published values for algae growth. Raceways were found to be significantly more turbulent than standard algae environments, and adding delta wings increased these levels further.
404

Wake states of a submerged oscillating cylinder and of a cylinder beneath a free-surface

Carberry, Josie January 2002 (has links)
Abstract not available
405

A study of the mechanism for vortex breakdown and some measures for its control

Jones, Michael Charles, 1971- January 2002 (has links)
Abstract not available
406

The evolution of the near field of a precessing jet flow.

Clayfield, Kimberley Christina January 2004 (has links)
Research into the fluidic precessing jet, used in industrial burners, has been carried out within the School of Mechanical Engineering at the University of Adelaide for over a decade. The flow field generated by the fluidic precessing jet (FPJ) is extremely complex, and there are many questions yet to be answered about the mechanisms by which precession influences the mixing of the jet and ambient fluid, and hence combustion. Some may be answered by studying a non-reacting precessing jet. The mechanical precessing jet (MPJ) nozzle generates a precessing jet for which the exit conditions are well known, unlike the fluidic precessing jet. The non-reacting flow from this 'mechanical analogue' of the FPJ forms the basis of the current study. The MPJ provides a means of controlling and changing the structure of turbulence in a precessing jet by varying its precessional frequency. The characteristics of the MPJ flow are primarily determined by a Strouhal number of precession, and may be categorised as belonging to either a 'low Strouhal number' or 'high Strouhal number' regime of behaviour. The fundamental aim of studying the mechanical precessing jet flow is to determine the influence of the structure of turbulent motions, and in particular the large scale motions, on jet mixing. The analyses presented in this thesis lead to a better understanding of the underlying mechanisms of precession-enhanced turbulent mixing and combustion. Simultaneously collected phase-averaged velocity and concentration fields of the MPJ flow are presented, and correlations between the fields analysed, for one low and one high Strouhal number. Additionally, because the turbulent flow produced by the MPJ nozzle is unsteady in nature and instantaneous realisations of the flow may differ significantly from the mean flow patterns, planar velocity and concentration measurements which show instantaneous flow structure over the entire field are presented. The phase-averaged velocity and concentration field data have enabled new analytical models of the MPJ trajectory to be developed, and the behaviour of the major flow features, including the stability of the counter-rotating vortex pair, to be studied. The strong entrainment and mixing characteristics of the MPJ flow are also illustrated. The data and analysis strongly suggest that the initial trajectory of the jet is essentially radial, during which the jet experiences axial compression. At larger radius the jet experiences axial stretching. A counter- rotating vortex pair is seen to form approximately two potential core lengths from the jet exit, where the jet appears to bend sharply towards the axis of rotation. These vortices dominate the jet motion in the near field and eventually merge in the transition region of the flow. The inner vortex of the counter-rotating vortex pair mixes at approximately half the rate of the outer vortex, thus delivering a rich fuel mixture to the transition region when the MPJ is used as a burner. This may explain in part earlier observations of highly radiant, fuel-rich flames in the transition region. This study also outlines the development of an experimental technique for the simultaneous measurement of velocity and concentration in a plane. The medium is air, and the technique combines Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) of acetone vapour in a unique manner. / Thesis (Ph.D.)--School of Mechanical Engineering, 2004.
407

On the relation between fluid flow over bluff bodies and accompanying acoustic radiation.

Blazewicz, Antoni Michal January 2008 (has links)
The relationship between distinctive characteristic fluid-flow regimes and the sound radiation generated by them has been investigated, over a range of Reynolds numbers, for various single plates and two-plate arrays in nominally two-dimensional flows. In preliminary experiments, the characteristics of flow over single plates with rectangular cross-section and faired leading edges and over tandem arrays of an upstream plate with rectangular cross-section and faired leading edges and a downstream plate of rectangular cross-section were investigated, together with the sound radiation produced. However, the main investigation has been concentrated on single plates of rectangular cross-section with various chord-to-thickness ratios C and on arrays of two plates of rectangular cross-section in tandem having various chord-to-thickness ratios C₁ and C₂ and a range of gaps (with gap-to-thickness ratios G) between them. The range of Reynolds number based on plate thickness t and free-stream velocity U, Re[subscript]t = Ut/ν (where ν is the kinematic viscosity of fluid) covered in the measurements is 3.2 x 10[superscript]3 ≤ Re[subscript]t 53 x 10[superscript]3. Spectra of velocity fluctuations in the flow and radiated sound have been measured and their characteristic frequencies related. An attempt has been made to measure force fluctuations on surfaces of the plates in order to relate them to flow characteristics and radiated sound power. Mean and fluctuating pressures associated with the force fluctuations on the plates have also been obtained. The lengths of separation bubbles on long rectangular plates have also been determined. In most cases, the measurements have been complemented by flow-visualisation in a water tunnel to provide additional detailed insight into the flow patterns. Three flow regimes have been identified for single plates of rectangular cross-section. In the first regime (1 ≤ C ≤ 3.13), shear layers separated from the leading edges form a vortex street downstream of the plate without reattachment to it. Associated force fluctuations on the plate are the main source of acoustic radiation. In the second regime (3.05 ≤ C ≤ 9.65), the separated shear layers reattach intermittently to the streamwise plate surfaces. Vortex formation in the shear layer is the dominant cause of sound radiation but the effect becomes weaker as C increases. In the third regime (6.52 ≤ C ≤ 68), the separated shear layers form closed leading-edge separation bubbles. Weak vortex shedding, with only a small contribution to the sound radiation, occurs only at the trailing edges of the plate. Bistable behaviour of the flow over a plate, with random switching between the regimes, occurs for C ≈ 3 and 6.52 ≤ C ≤ 9.65. A proposed classification of possible flow regimes for the flow around two plates of rectangular cross-section in tandem has been confirmed experimentally. For small G, the flow in the gap between the plates is isolated from the external flow. When the gap G between the plates is increased to or beyond a critical value (between 2 and 3.5), the shear layers separated from the upstream plate form a von Karman vortex street in the gap before interacting with the downstream plate. Flow and acoustic measurements indicate that this transition is associated with dramatic changes in the flow character. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320474 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2008
408

Vortex Supraconducteurs de la théorie de Weinberg--Salam

Garaud, Julien 29 September 2010 (has links) (PDF)
Nous présentons ici, l'analyse détaillée et l'étude de la stabilité de nouvelles solutions de type vortex dans le secteur bosonique de la théorie électrofaible. Les nouvelles solutions généralisent le plongement des solutions d'Abrikosov-Nielsen-Olesen dans la théorie électrofaible et reproduisent les résultats précédemment connus. Les vortex, génériquement porteurs d'un courant électrique, sont constitués d'un coeur massif de bosons chargés W entouré d'une superposition non-linéaire de champs Z et Higgs. Au loin la solution est purement électromagnétique avec un potentiel de Biot et Savart. Les solutions sont génériques de la théorie et existent en particulier pour les valeurs expérimentales des constantes de couplage. Il est en particulier démontré que le courant dont l'échelle typique est le milliard d'Ampères peut être arbitrairement grand. Dans un second temps la stabilité linéaire des vortex supraconducteurs vis-à-vis des perturbations génériques est considérée. Le spectre de l'opérateur de fluctuations est étudié qualitativement. Lorsque des modes instables sont détectés, ils sont explicitement construits ainsi que leurs relations de disperion. La plupart des modes instables sont supprimés par une périodisation du vortex. Il subsiste cependant un unique mode instable homogène. On peut espérer qu'un tel mode puisse être supprimé par des effets de courbure si une portion de vortex est refermée afin de former une boucle stabilisée par le courant électrique.
409

Vortical structures generated by a localized forcing /

Korabel, Vasily N. January 2005 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2005. / Bibliography: leaves 113-118.
410

Mechanical behavior of membranes in electrostatic pecipitators

Ramamoorthy, Thiagarajan. January 2005 (has links)
Thesis (M.S.)--Ohio University, June, 2005. / Title from PDF t.p. Includes bibliographical references (p. 75-76)

Page generated in 0.398 seconds