• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 2
  • 1
  • Tagged with
  • 22
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tectonically-controlled emplacement mechanisms in the upper crust under specific stress regimes: case studies / Tektonisch-kontrollierte Platznahmemechanismen in der oberen Kruste unter spezifischen Spannungsregimen: Fallbeispiele

Friese, Nadine 15 July 2009 (has links)
No description available.
12

Mechanisms of magma emplacement in the upper crust / Mechanismen der Platznahme von Magma in der Oberkruste

Burchardt, Steffi 18 March 2009 (has links)
No description available.
13

Vulkanismus plání v oblasti Tharsis na Marsu: Stáří a reologické vlastnosti vyvřelých hornin / Plains volcanism in Tharsis region on Mars: Ages and Rheology of Eruption Products

Brož, Petr January 2010 (has links)
Plains volcanism in Tharsis region on Mars: Ages and Rheology of Eruption Products Remote sensing data show clusters of low shield volcanoes in Tharsis volcanic province on Mars (Hauber et al., 2009). These low shield volcanoes and associated landforms are comparable with terrestrial plain-style volcanic products (Plescia, 1981) as defined by Greeley (1982) in the Snake River Plain in Idaho, which represents an intermediate style of volcanic activity ranging between flood basalts and the Hawaiian shields. While a number of recent studies addressed some aspects of low shield volcanoes, in particular their morphology, morphometry, and lava rheology, no systematic study including the chronology for the entire region of Tharsis is available so far. The goal of this work is to determine relative and absolute ages of low shield volcanoes and surrounding lava flows and their basic rheological properties. We used crater size-frequency distribution method (CSFD) developed by Hartman and Neukum (2001) and Ivanov (2001) for determination of absolute dating of the surface. For calculation of the rheological properties of the lava, we used methods established by Hiesinger et al. (2007). It is known that the low shield volcanoes on Mars consist of basaltic lavas that had low viscosities during their effusion, which can...
14

Genesis of Quaternary volcanic rocks from Kamchatka/Russia

Dorendorf, Frank 27 April 1999 (has links)
No description available.
15

Geotope - Einblicke in die Erdgeschichte

Geißler, Marion, Hartmann, Anja, Heidenfelder, Wolfram, Witzke, Tim 11 November 2019 (has links)
Naturschutz ist inzwischen tief in unserem Denken und Handeln angekommen. Aber noch immer wird dabei zu allererst an den Schutz von Tieren und Pflanzen gedacht, gefolgt vom Schutz des oberirdischen und unterirdischen Wassers. Das ist verständlich, hat doch diese Art des Naturschutzes lange zurückliegende Wurzeln.
16

Der Rochlitzer Supervulkan: Vulkanosedimentäre Faziesanalyse und Geochemie des permischen Rochlitz-Ignimbrit-Komplexes und seiner distalen Äquivalente

Hübner, Marcel, Repstock, Alexander, Rommel, Axel, Fischer, Frank, Lapp, Manuel, Breitkreuz, Christoph, Heuer, Franziska 02 July 2020 (has links)
Im Schatten der ausklingenden variszischen Gebirgsbildung erschütterten katastrophale Supervulkanausbrüche vor ca. 300 Millionen Jahren das Spätpaläozoikum Mitteleuropas. Östlich von Leipzig erstreckt sich auf einer Gesamtfläche von 2.000 km² (ca. 10 % der Fläche des Freistaates) der Nordsächsische Vulkanitkomplex, welcher mindestens zwei große Calderen beinhaltet: 1) das Wurzener und 2) das Rochlitzer Vulkansystem. Wobei die Gesteine des Rochlitzer Vulkansystems die größte Verbreitung finden. Ablagerungen dieser intrakontinentalen und großvolumigen Eruptionen dienten zahlreichen historischen Bauwerken als Baustoff. Redaktionsschluss: 27.04.2020
17

Entdeckertour im GeoErlebnisGarten: Geoportal Herrenhaus Röcknitz : spielerischer Rundgang für junge Forscher

05 July 2022 (has links)
Auf deiner Entdeckungstour durch den GeoErlebnisGarten begegnen dir an sieben Stationen verblüffende Fakten zur Geologie unserer Erde und des Geoparks. Dabei wirst du sehen, Geologie ist gar nicht so langweilig wie gedacht, denn Stein ist nicht gleich Stein! Könnten sie reden, würden sie uns Geschichten von riesigen Vulkanen, Gletschern und Meteoriten erzählen. Aber auch ohne zu sprechen, verraten sie den Wissenschaftlern jeden Tag wieder neue Geheimnisse der Erde und ihrer Entwicklung. Ein paar dieser entlüfteten Rätsel werden dir an den folgenden Stationen sozusagen anvertraut. Am Ende deiner Entdeckertour durch den GeoErlebnisGarten kannst du dein neu erworbenes Wissen auf den Rätselseiten im Heft unter Beweis stellen.
18

Boron as a tracer for material transfer in subduction zones

Rosner, Martin Siegfried January 2003 (has links)
Spät-miozäne bis quartäre Vulkanite der vulkanischen Front und der Back-arc Region der Zentralen Vulkanischen Zone in den Anden weisen eine weite Spannbreite von delta 11B Werten (+4 bis &ndash;7 &permil;) and Borkonzentrationen (6 bis 60 ppm) auf. Die positiven delta 11B Werte der Vulkanite der vulkanischen Front zeigen eine Beteiligung einer 11B-reichen Komponente am Aufbau der andinen Vulkanite, die am wahrscheinlichsten aus Fluiden der alterierten ozeanischen Kruste der abtauchenden Nazca-Platte stammt. Diese Beobachtung macht einen alleinigen Ursprung der untersuchten Laven aus der kontinentalen Kruste und/oder dem Mantelkeil unwahrscheinlich. Der Trend zu systematisch negativeren delta 11B Werten und kleineren B/Nb Verhältnissen von der vulkanischen Front zum Back-arc wird als Resultat einer Borisotopenfraktionierung einhergehend mit einer stetigen Abnahme der Fluidkomponente und einer relativ konstanten krustalen Kontamination, die sich durch relativ gleichbleibende Sr, Nd und Pb Isotopenverhältnisse ausdrückt, interpretiert. Weil die delta 11B Variation über den andinen vulkanischen Bogen sehr gut mit einer modellierten, sich als Funktion der Temperatur dynamisch verändernden, Zusammensetzung des Subduktionszonenfluides übereinstimmt, folgern wir, dass die Borisotopenzusammensetzung von Arc-Vulkaniten durch die sich dynamisch ändernde delta 11B Signatur eines Bor-reichen Subduktionsfluides bestimmt ird. Durch die Abnahme dieses Subduktionsfluides während der Subduktion nimmt der Einfluss der krustalen Kontamination auf die Borisotopie der Arc-Vulkanite im Back-arc zu. In Anbetracht der Borisotopenfraktionierung müssen hohe delta 11B Werte von Arc-Vulkaniten nicht notwendigerweise Unterschiede in der initialen Zusammensetzung der subduzierten Platte reflektieren.<br /> Eine Dreikomponenten Mischungskalkulation zwischen Subduktionsfluid, dem Mantelkeil und der kontinentalen Kruste, die auf Bor-, Strontium- und Neodymiumisotopendaten beruht, zeigt, dass das Subduktionsfluid die Borisotopie des fertilen Mantels dominiert und, dass die primären Arc-Magmen durchschnittlich einen Anteil von 15 bis 30 % krustalem Materiales aufweisen. / Late Miocene to Quaternary volcanic rocks from the frontal arc to the back-arc region of the Central Volcanic Zone in the Andes show a wide range of delta 11B values (+4 to -7 &permil;) and boron concentrations (6 to 60 ppm). Positive delta 11B values of samples from the volcanic front indicate involvement of a 11B-enriched slab component, most likely derived from altered oceanic crust, despite the thick Andean continental lithosphere, and rule out a pure crust-mantle origin for these lavas. The delta 11B values and B concentrations in the lavas decrease systematically with increasing depth of the Wadati-Benioff Zone. This across-arc variation in delta 11B values and decreasing B/Nb ratios from the arc to the back-arc samples are attributed to the combined effects of B-isotope fractionation during progressive dehydration in the slab and a steady decrease in slab-fluid flux towards the back arc, coupled with a relatively constant degree of crustal contamination as indicated by similar Sr, Nd and Pb isotope ratios in all samples. Modelling of fluid-mineral B-isotope fractionation as a function of temperature fits the across-arc variation in delta 11B and we conclude that the B-isotope composition of arc volcanics is dominated by changing delta 11B composition of B-rich slab-fluids during progressive dehydration. Crustal contamination becomes more important towards the back-arc due to the decrease in slab-derived fluid flux. Because of this isotope fractionation effect, high delta 11B signatures in volcanic arcs need not necessarily reflect differences in the initial composition of the subducting slab. <br /> Three-component mixing calculations for slab-derived fluid, the mantle wedge and the continental crust based on B, Sr and Nd isotope data indicate that the slab-fluid component dominates the B composition of the fertile mantle and that the primary arc magmas were contaminated by an average addition of 15 to 30 % crustal material.
19

Experimentelle und numerische Untersuchungen zur Ausbreitung von Volumenstörungen in thermischen Plumes. / Experimental and numerical studies of the propagation of volume disturbances in thermal plumes.

Laudenbach, Nils 14 December 2001 (has links)
No description available.
20

Geological and mineralogical investigation of hydrothermal fluid discharge features at the sea bottom of Panarea, Italy

Stanulla, Richard 01 September 2021 (has links)
The thesis presents research on recent hydrothermal discharge features in a shallow marine hydrothermal system. It aims to clarify their occurrence, genesis, and preservation potential. A facies model is developed, being based on the processes involved in the formation and the prevailing lithofacies. It describes six major groups: channels, fractures, tubes, cones, bowls, and lineaments. Each of these groups subdivides into numerous facies types according to the cements or mineral precipitates prevailing. To clarify the rather complex formation processes of hydrothermal discharge features, genetic models for each facies are proposed. An integrated evolutionary model is developed considering the temporal evolution of the major types of hydrothermal discharge features in the Panarea system and their preservation potential. Confirming presumptions of former, preliminary data, the first documentation of secure paleo-evidences of such hydrothermal discharge features is presented.:1. Introduction ....11 1.1. Preamble .....11 1.2. Research questions, objectives, and hypotheses ......................................... 12 2. State of research - seafloor hydrothermal systems ................................ 15 2.1. Hydrothermal deposits in general ................................................................. 15 2.2. Deep-sea environments ............................................................................... 16 2.3. Shallow-water systems and their preservation potential ............................... 17 3. Panarea Island - the area of investigation ................................................ 20 3.1. The hydrothermal system of Panarea Island ................................................ 20 3.2. Fluid discharge features in Panarea ............................................................. 30 3.3. Study sites .................................................................................................... 34 4. Materials and methods ............................................................................... 40 4.1. Underwater research .................................................................................... 40 4.2. Field methods ............................................................................................... 41 4.3. Laboratory methods ..................................................................................... 44 5. Results ........................................................................................................ 47 5.1. Prevailing lithologies ..................................................................................... 47 5.1.1. Hardrocks ..................................................................................................... 47 5.1.2. Sedimentary rocks ........................................................................................ 51 5.1.3. Sediments .................................................................................................... 54 5.1.4. Cements ....................................................................................................... 58 5.2. Underwater investigation sites and findings ................................................. 66 HYDROTHERMAL FLUID DISCHARGE FEATURES IN PANAREA, ITALY PAGE 10 | 174 5.2.1. Area 26 ......................................................................................................... 66 5.2.2. Basiluzzo ...................................................................................................... 75 5.2.3. Black Point ................................................................................................... 77 5.2.4. Bottaro North ................................................................................................ 79 5.2.5. Bottaro West ................................................................................................. 81 5.2.6. Cave ............................................................................................................. 84 5.2.7. Fumarolic Field ............................................................................................. 87 5.2.8. Hot Lake ....................................................................................................... 89 5.2.9. La Calcara .................................................................................................... 92 5.2.10. Point 21 ........................................................................................................ 98 5.2.11. Subaerial locations ..................................................................................... 100 5.3. Summarizing tables .................................................................................... 104 6. Interpretation ............................................................................................ 106 6.1. Discharge features and secondary processes ............................................ 106 6.1.1. Complex genesis and development of discharge features and their occurrence throughout the system ............................................................. 119 6.1.1.1. Cones, bowls, and lineament structures ..................................................... 119 6.1.1.2. Tubes ......................................................................................................... 128 6.2. Preservation potential and paleo-record ..................................................... 138 7. Conclusion and Discussion .................................................................... 141 7.1. General context of the formation of hydrothermal discharge features in Panarea ...................................................................................................... 141 7.2. Evolution of hydrothermal discharge features in Panarea .......................... 142 7.3. Comprehensive summary ........................................................................... 145

Page generated in 0.047 seconds