• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da cristalinidade de filmes finos de nitreto de índio e simulado pelo pacote de programas Wien2k / Study of the crystallinity of thin films of InN and simulated by the Wien2k package.

Hattori, Yocefu 05 May 2016 (has links)
Neste trabalho, foi utilizado o método de deposição assistida por feixe de íons (IBAD na sigla em inglês) para produção de filmes finos de nitreto de índio em substratos de silício (111) e Safira-C. Variando as condições de deposição e utlilizando a técnica de difração de raios-X, investigou-se com o intuito de obter os parâmetros que resultam em filmes finos com melhor grau de cristalinidade. Os filmes produzidos a 380C apresentaram alta cristalinidade, superior àqueles a 250C. Temperaturas muito superiores a 380C não ocasionam a formação de filme cristalino de InN, como foi observado ao utilizar a temperatura de 480C; o mesmo se observa ao utilizar temperatura ambiente. Na temperatura considerada adequada ,de 380C, obteve-se que a utilização de Ra, ou seja, a razão de fluxo de partículas entre o nitrogênio e índio, em torno de 2,3 permite obter um melhor grau de cristalinização, o qual decresce conforme se diverge desse valor. A comparação entre difratogramas de amostras produzidas com e sem a evaporação prévia de titânio, o qual é possível observar um deslocamento dos picos do InN, indicam que o efeito Gettering permite a redução de impurezas no filme, principalmente de oxigênio. Utilizou-se a técnica de Retroespalhamento de Rutherford para obtenção da composição dos elementos e o perfil de profundidade. Notou-se uma forte mistura dos elementos do substrato de silício e safira com o nitreto de índio mesmo próximos a superfície. A presença indesejável de impurezas, principalmente o oxigênio, durante a deposição de filmes finos é praticamente inevitável. Desta forma, cálculos ab initio baseados na Teoria do Funcional da Densidade (DFT) foram realizados para investigar defeitos isolados e complexos de oxigênio no nitreto de índio e a sua influência nas propriedades óticas. Considerou-se diferentes concentrações de oxigênio (x=2,76, 8,32, 11,11 e 22,22%) aplicando-se o método PBEsolGGA e TB-mBJ para o tratamento da energia e potencial de troca e correlação. Obteve-se que é energeticamente favorável o oxigênio existir principalmente como defeito carregado e isolado. Os resultados utilizando a aproximação de TB-mBJ indicam um estreitamento do bandgap conforme a concentração de oxigênio aumenta. Entretanto, a alta contribuição do efeito de Moss-Burstein resulta num efetivo alargamento do band gap, gerando valores de band gap ótico maiores que no do bulk de nitreto de índio. / In the present work, the ion beam assisted deposition (IBAD) method was used for the production of thin films of indium nitride in silicon (111) and sapphire (001) substrates. Through variation of deposition conditions and by using X-ray diffraction technique, the parameters which resulted in thin films with the best crystallinity were investigated. The film produced at 380C showed good crystallinity, which was better than the one produced at 250C. Temperatures much higher than 380C doesn\'t lead to the formation of crystalline films of InN; the same is observed by using room temperature. In the temperature of 380C considered as adequate, it was obtained that using Ra, that is, the flux ratio of nitrogen and indium, around 2.3 allows getting a better crystallinity, which decreases as deviates from this value. The comparison between diffractograms of samples produced with and without the previous titanium evaporation, where a dislocation of indium nitride peak was observed, indicates that the Gettering effect reduces the impurities on the films, especially oxygen. The Rutherford Backscattering technique was applied in order to obtain the elements composition and the depth profile. It was noticed a strong mixture between substrates elements with the indium nitride even close to the surface. The presence of unintentional impurities, mainly oxygen, are almost inevitable during thin films deposition. Thus, Density Functional Theory based on \\textit calculations was employed to investigate single and complex defects of oxygen in Indium Nitride and their influence on the optical properties. Different oxygen contents (x=2.76, 8.32, 11.11 and 22.22%) were considered in our study by using PBEsolGGA and TB-mBJ for the treatment of exchange-correlation energy and potential. It was found that oxygen is energetically favorable to exist mainly as singly charged isolated defect. The results using TB-mBJ approximation predicts a narrowing of the bandgap as oxygen content increases. Nevertheless, the larger contribution of the Moss-Burstein effect leads to an effective band-gap increase, yielding absorption edge values larger than that of the intrinsic bulk indium nitride.
2

Estudo da cristalinidade de filmes finos de nitreto de índio e simulado pelo pacote de programas Wien2k / Study of the crystallinity of thin films of InN and simulated by the Wien2k package.

Yocefu Hattori 05 May 2016 (has links)
Neste trabalho, foi utilizado o método de deposição assistida por feixe de íons (IBAD na sigla em inglês) para produção de filmes finos de nitreto de índio em substratos de silício (111) e Safira-C. Variando as condições de deposição e utlilizando a técnica de difração de raios-X, investigou-se com o intuito de obter os parâmetros que resultam em filmes finos com melhor grau de cristalinidade. Os filmes produzidos a 380C apresentaram alta cristalinidade, superior àqueles a 250C. Temperaturas muito superiores a 380C não ocasionam a formação de filme cristalino de InN, como foi observado ao utilizar a temperatura de 480C; o mesmo se observa ao utilizar temperatura ambiente. Na temperatura considerada adequada ,de 380C, obteve-se que a utilização de Ra, ou seja, a razão de fluxo de partículas entre o nitrogênio e índio, em torno de 2,3 permite obter um melhor grau de cristalinização, o qual decresce conforme se diverge desse valor. A comparação entre difratogramas de amostras produzidas com e sem a evaporação prévia de titânio, o qual é possível observar um deslocamento dos picos do InN, indicam que o efeito Gettering permite a redução de impurezas no filme, principalmente de oxigênio. Utilizou-se a técnica de Retroespalhamento de Rutherford para obtenção da composição dos elementos e o perfil de profundidade. Notou-se uma forte mistura dos elementos do substrato de silício e safira com o nitreto de índio mesmo próximos a superfície. A presença indesejável de impurezas, principalmente o oxigênio, durante a deposição de filmes finos é praticamente inevitável. Desta forma, cálculos ab initio baseados na Teoria do Funcional da Densidade (DFT) foram realizados para investigar defeitos isolados e complexos de oxigênio no nitreto de índio e a sua influência nas propriedades óticas. Considerou-se diferentes concentrações de oxigênio (x=2,76, 8,32, 11,11 e 22,22%) aplicando-se o método PBEsolGGA e TB-mBJ para o tratamento da energia e potencial de troca e correlação. Obteve-se que é energeticamente favorável o oxigênio existir principalmente como defeito carregado e isolado. Os resultados utilizando a aproximação de TB-mBJ indicam um estreitamento do bandgap conforme a concentração de oxigênio aumenta. Entretanto, a alta contribuição do efeito de Moss-Burstein resulta num efetivo alargamento do band gap, gerando valores de band gap ótico maiores que no do bulk de nitreto de índio. / In the present work, the ion beam assisted deposition (IBAD) method was used for the production of thin films of indium nitride in silicon (111) and sapphire (001) substrates. Through variation of deposition conditions and by using X-ray diffraction technique, the parameters which resulted in thin films with the best crystallinity were investigated. The film produced at 380C showed good crystallinity, which was better than the one produced at 250C. Temperatures much higher than 380C doesn\'t lead to the formation of crystalline films of InN; the same is observed by using room temperature. In the temperature of 380C considered as adequate, it was obtained that using Ra, that is, the flux ratio of nitrogen and indium, around 2.3 allows getting a better crystallinity, which decreases as deviates from this value. The comparison between diffractograms of samples produced with and without the previous titanium evaporation, where a dislocation of indium nitride peak was observed, indicates that the Gettering effect reduces the impurities on the films, especially oxygen. The Rutherford Backscattering technique was applied in order to obtain the elements composition and the depth profile. It was noticed a strong mixture between substrates elements with the indium nitride even close to the surface. The presence of unintentional impurities, mainly oxygen, are almost inevitable during thin films deposition. Thus, Density Functional Theory based on \\textit calculations was employed to investigate single and complex defects of oxygen in Indium Nitride and their influence on the optical properties. Different oxygen contents (x=2.76, 8.32, 11.11 and 22.22%) were considered in our study by using PBEsolGGA and TB-mBJ for the treatment of exchange-correlation energy and potential. It was found that oxygen is energetically favorable to exist mainly as singly charged isolated defect. The results using TB-mBJ approximation predicts a narrowing of the bandgap as oxygen content increases. Nevertheless, the larger contribution of the Moss-Burstein effect leads to an effective band-gap increase, yielding absorption edge values larger than that of the intrinsic bulk indium nitride.
3

Crystal structure, electron density and chemical bonding in inorganic compounds studied by the Electric Field Gradient

Koch, Katrin 22 September 2009 (has links) (PDF)
The goal of solid state physics and chemistry is to gain deeper understanding of the basic principles of condensed matter. This ongoing process is achieved by the combination of experimental methods and theoretical models. One theoretical approach are the so-called first-principles calculations, which are based on the concept of density functional theory (DFT). In order to test the reliability of a band structure calculation, its results have to be compared with experiments. Since the electron density, the main constituent of DFT codes, cannot be directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other experimentally available properties are needed for the comparison with the calculation. A quantity that can be measured with high accuracy and that provides indirect information about the electron density is the electric field gradient (EFG). The EFG reflects local structural symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the density deviates from cubic symmetry and therefore generates an inhomogeneous electric field at the nucleus. Since the EFG is highly sensitive to structural parameters and to disorder, it is a valuable tool to extract structural information. Furthermore, the evaluation of the EFG can provide valuable insight into the chemical bonding. Whereas the experimental determination of the quadrupole frequency and the closely related EFG has been possible for more than 70 years, reliable values for calculated EFGs could not be obtained before 1985, when an EFG module was implemented in the full-potential, linearised-augmented-plane-wave code WIEN. Since the full-potential local-orbital minimum-basis scheme FPLO is numerically very efficient and its local-orbital scheme allows an easy analysis of the different contributions to the EFG, one goal of this work was the implementation of an EFG module within the FPLO code. The newly implemented EFG module was applied to different systems: starting from simple metals, then approaching more complex systems and finally tackling strongly correlated oxides. Simultaneously, the EFGs for the studied compounds were determined experimentally by NMR spectroscopists. This close collaboration enables the comparison of the calculated EFGs with the experimental observations, which makes it possible to extract more physical and chemical information from the measured values regarding structural relaxation, distortion, the chemical bond or the relevance of electron correlation. In the last part of this work, the importance of corrections that go beyond the EFG are discussed. Such corrections arise for any multipole order of the hyperfine interactions, and are due to electron penetration into the nucleus. A correction similar to the isomer shift, coined here the "quadrupole shift" is examined in detail.
4

Crystal structure, electron density and chemical bonding in inorganic compounds studied by the Electric Field Gradient

Koch, Katrin 18 September 2009 (has links)
The goal of solid state physics and chemistry is to gain deeper understanding of the basic principles of condensed matter. This ongoing process is achieved by the combination of experimental methods and theoretical models. One theoretical approach are the so-called first-principles calculations, which are based on the concept of density functional theory (DFT). In order to test the reliability of a band structure calculation, its results have to be compared with experiments. Since the electron density, the main constituent of DFT codes, cannot be directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other experimentally available properties are needed for the comparison with the calculation. A quantity that can be measured with high accuracy and that provides indirect information about the electron density is the electric field gradient (EFG). The EFG reflects local structural symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the density deviates from cubic symmetry and therefore generates an inhomogeneous electric field at the nucleus. Since the EFG is highly sensitive to structural parameters and to disorder, it is a valuable tool to extract structural information. Furthermore, the evaluation of the EFG can provide valuable insight into the chemical bonding. Whereas the experimental determination of the quadrupole frequency and the closely related EFG has been possible for more than 70 years, reliable values for calculated EFGs could not be obtained before 1985, when an EFG module was implemented in the full-potential, linearised-augmented-plane-wave code WIEN. Since the full-potential local-orbital minimum-basis scheme FPLO is numerically very efficient and its local-orbital scheme allows an easy analysis of the different contributions to the EFG, one goal of this work was the implementation of an EFG module within the FPLO code. The newly implemented EFG module was applied to different systems: starting from simple metals, then approaching more complex systems and finally tackling strongly correlated oxides. Simultaneously, the EFGs for the studied compounds were determined experimentally by NMR spectroscopists. This close collaboration enables the comparison of the calculated EFGs with the experimental observations, which makes it possible to extract more physical and chemical information from the measured values regarding structural relaxation, distortion, the chemical bond or the relevance of electron correlation. In the last part of this work, the importance of corrections that go beyond the EFG are discussed. Such corrections arise for any multipole order of the hyperfine interactions, and are due to electron penetration into the nucleus. A correction similar to the isomer shift, coined here the "quadrupole shift" is examined in detail.
5

Elektrische Quadrupolwechselwirkung in defektreichen und deformierten MAX-Phasen / Electric quadrupole interaction in defect-rich and deformed MAX phases

Brüsewitz, Christoph 22 July 2015 (has links)
In der vorliegenden Arbeit wird dargestellt, wie sich mit Methoden der nuklearen Festkörperphysik Defekte und Deformationen selbst in kristallographisch komplexen Materialien wie den MAX-Phasen, einer Klasse von Komplexcarbiden bzw. -nitriden, in-situ nachweisen lassen. Die sensitive Messgröße bildet dabei der elektrische Feldgradient (EFG), der ein Maß für die Asymmetrie der den jeweiligen Sondenkern umgebenden Ladungsverteilung darstellt. Es werden zwei Wechselwirkungsmechanismen zwischen Defekt und EFG diskutiert: Einerseits die langreichweitigen Auswirkungen elastischer Verzerrungen, andererseits der direkte Einfluss eines Defektes auf seine lokale elektronische Umgebung. Die Bestimmung der elastischen Antwort des Feldgradienten erfolgt mittels Ab-initio-Methoden im Rahmen der Dichtefunktionaltheorie. Der dabei vorgestellte Ansatz erlaubt es, die Ursachen der Dehnungsabhängigkeit zu klären und andere, speziellere Dehnungsabhängigkeiten wie die Volumenabhängigkeit oder die Strukturabhängigkeit des Feldgradienten zu bestimmen. Die in der Umgebung bestimmter Defekte oder Deformationen auftretenden EFG-Verteilungen werden anhand der allgemeinen Dehnungsabhängigkeit mittels Monte-Carlo-Simulationen bestimmt. Die so vorhergesagten Verteilungen werden durch ein Experiment im Rahmen der gestörten $\gamma$-$\gamma$-Winkelkorrelation (PAC) sichtbar gemacht, indem polykristalline MAX-Phasen unter uniaxialer Last verformt werden. Eine quantitative Auswertung erlaubt es schließlich, Defektdichten in-situ abzuschätzen. Die lokalen Auswirkungen auf den EFG werden anhand verschiedener MAX-Phasen-Mischkristalle systematisch untersucht. Im Zuge dessen wird die Synthese eines bisher unbekannten MAX-Phasen-Mischkristalls, Ti$_2$(Al$_{0,5}$,In$_{0,5}$)C, beschrieben. Die Zugehörigen Gitterkonstanten werden mittels Röntgendiffraktometrie im Rahmen der Rietveld-Methode bestimmt.
6

Untersuchung der elektrischen Hyperfeinwechselwirkung in M<sub>n+1</sub>AX<sub>n</sub>-Phasen mittels der gestörten &#947;-&#947;-Winkelkorrelation / Investigation of the electric hyperfine interaction in M<sub>n+1</sub>AX<sub>n</sub>-phases by means of perturbed &#947;-&#947;-angular correlation

Jürgens, Daniel 28 June 2013 (has links)
Mn+1AXn-Phasen sind thermodynamisch stabile nanolaminierte Ternärcarbide und -nitride, die sowohl metallische als auch keramische Eigenschaften aufweisen. Der Buchstabe M steht für ein frühes Übergangsmetall, der Buchstabe A für ein A-Element aus den Gruppen IIIA – VIA und X für Kohlenstoff und/oder Stickstoff. Die M-Atome bilden Oktaederschichten mit X-Atomen in ihren Zentren. Der Index n beschreibt die Dicke der Mn+1Xn-Lage, die zwischen zwei hexagonalen A-Schichten eingebettet ist. Die außergewöhnlichen Eigenschaften dieser Materialien haben ihren Ursprung in ihrer Mikrostruktur. Um einen Einblick auf atomarer Ebene zu gewinnen wird die Messmethode der gestörten γ-γ-Winkelkorrelation (PAC) angewendet. Die radioaktiven Sonden 111In/111Cd und 181Hf/181Ta werden durch Ionenimplantation und/oder durch Neutronenaktivierung in das Wirtsmaterial eingebracht, um den elektrischen Feldgradienten (EFG) zu messen, der am Gitterpatz des Sondenatoms herrscht. Das erste Ziel der Arbeit ist die Suche nach optimalen Ausheilparametern, mit denen ein möglichst hoher Anteil der Sonden die gleiche lokale Umgebung spürt. Der nächste Schritt ist die Bestimmung des Gitterplatzes der Sonden in der MAX-Struktur. Als Ergebnis kann festgestellt werden, dass 111In in den In- und Al-basierten MAX-Phasen fast ausschließlich den A-Platz besetzt, während 181Hf in Hf2InC auf dem M-Platz eingebaut wird. Als überraschendes Ergebnis zeigt diese Arbeit, dass die PAC-Methode bei Phasen mit gleichen Konstituenten, aber unterschiedlicher Mn+1Xn-Schichtdicke sensitiv auf die Änderung der Stapelfolge ist. Die Experimente werden mit umfangreichen Rechnungen auf Basis der Dichtefunktionaltheorie (DFT) verglichen, die hier erstmalig für nahezu alle Mitglieder der Familie der MAX-Verbindungen durchgeführt wurden. Die DFT-Rechnungen reproduzieren die gemessenen EFGs mit hoher quantitativer Genauigkeit und stützen die Hypothese, dass sich die Sonden auf den prognostizierten Gitterplätzen befinden.

Page generated in 0.0155 seconds