1 |
The crystal and electronic structures of oxides containing d0 transition metals in octahedral coordinationEng, Hank W. January 2003 (has links)
No description available.
|
2 |
Crystal structure, electron density and chemical bonding in inorganic compounds studied by the Electric Field GradientKoch, Katrin 22 September 2009 (has links) (PDF)
The goal of solid state physics and chemistry is to gain deeper understanding of the basic principles of condensed matter. This ongoing process is achieved by the combination of experimental methods and theoretical models. One theoretical approach are the so-called first-principles calculations, which are based on the concept of density functional theory (DFT). In order to test the reliability of a band structure calculation, its results have to be compared with experiments. Since the electron density, the main constituent of DFT codes, cannot be directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other experimentally available properties are needed for the comparison with the calculation.
A quantity that can be measured with high accuracy and that provides
indirect information about the electron density is the electric field
gradient (EFG). The EFG reflects local structural symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the
density deviates from cubic symmetry and therefore generates an
inhomogeneous electric field at the nucleus. Since the EFG is highly
sensitive to structural parameters and to disorder, it is a
valuable tool to extract structural information. Furthermore, the
evaluation of the EFG can provide valuable insight into the chemical
bonding.
Whereas the experimental determination of the quadrupole frequency
and the closely related EFG has been possible for more than 70 years,
reliable values for calculated EFGs could not be obtained before 1985,
when an EFG module was implemented in the full-potential,
linearised-augmented-plane-wave code WIEN. Since the full-potential local-orbital minimum-basis scheme FPLO is numerically very efficient and its local-orbital scheme allows an easy analysis of the different contributions to the EFG, one goal of this work was the implementation of an EFG module within the FPLO code.
The newly implemented EFG module was applied to different systems:
starting from simple metals, then approaching more complex systems and finally tackling strongly correlated oxides. Simultaneously, the EFGs
for the studied compounds were determined experimentally by NMR
spectroscopists. This close collaboration enables the comparison of
the calculated EFGs with the experimental observations, which makes it
possible to extract more physical and chemical information from the
measured values regarding structural relaxation, distortion, the
chemical bond or the relevance of electron correlation.
In the last part of this work, the importance of corrections that go
beyond the EFG are discussed. Such corrections arise for any multipole order of the hyperfine interactions, and are due to electron penetration into the nucleus. A correction similar to the isomer shift, coined here the "quadrupole shift" is examined in detail.
|
3 |
Crystal structure, electron density and chemical bonding in inorganic compounds studied by the Electric Field GradientKoch, Katrin 18 September 2009 (has links)
The goal of solid state physics and chemistry is to gain deeper understanding of the basic principles of condensed matter. This ongoing process is achieved by the combination of experimental methods and theoretical models. One theoretical approach are the so-called first-principles calculations, which are based on the concept of density functional theory (DFT). In order to test the reliability of a band structure calculation, its results have to be compared with experiments. Since the electron density, the main constituent of DFT codes, cannot be directly determined experimentally with sufficient accuracy (e.g., by X-ray diffraction), other experimentally available properties are needed for the comparison with the calculation.
A quantity that can be measured with high accuracy and that provides
indirect information about the electron density is the electric field
gradient (EFG). The EFG reflects local structural symmetry properties of the charge distribution surrounding a nucleus: the EFG is nonzero if the
density deviates from cubic symmetry and therefore generates an
inhomogeneous electric field at the nucleus. Since the EFG is highly
sensitive to structural parameters and to disorder, it is a
valuable tool to extract structural information. Furthermore, the
evaluation of the EFG can provide valuable insight into the chemical
bonding.
Whereas the experimental determination of the quadrupole frequency
and the closely related EFG has been possible for more than 70 years,
reliable values for calculated EFGs could not be obtained before 1985,
when an EFG module was implemented in the full-potential,
linearised-augmented-plane-wave code WIEN. Since the full-potential local-orbital minimum-basis scheme FPLO is numerically very efficient and its local-orbital scheme allows an easy analysis of the different contributions to the EFG, one goal of this work was the implementation of an EFG module within the FPLO code.
The newly implemented EFG module was applied to different systems:
starting from simple metals, then approaching more complex systems and finally tackling strongly correlated oxides. Simultaneously, the EFGs
for the studied compounds were determined experimentally by NMR
spectroscopists. This close collaboration enables the comparison of
the calculated EFGs with the experimental observations, which makes it
possible to extract more physical and chemical information from the
measured values regarding structural relaxation, distortion, the
chemical bond or the relevance of electron correlation.
In the last part of this work, the importance of corrections that go
beyond the EFG are discussed. Such corrections arise for any multipole order of the hyperfine interactions, and are due to electron penetration into the nucleus. A correction similar to the isomer shift, coined here the "quadrupole shift" is examined in detail.
|
4 |
First Principle Calculations & Inelastic Neutron Scattering on the Single-Crystalline Superconductor LaPt2Si2Federico, Mazza January 2020 (has links)
This work presents a comprehensive study on single crystalline LaPt2Si2, in which superconductivity and a charge density wave (CDW) coexist. The usage of density functional theory (DFT) modeling and Inelastic Neutron Scattering has been the primary form of investigation, in order to determine all the characteristic features of the sample taken under consideration. From the results one can observe that the Fermi surface nesting is the primary contributor for the CDW wavevector ~qCDW = (1/3, 0, 0). In addition, the phonon density of states present two typical energy levels, with soft modes in the Pt3-Pt4 layer coherent with the presence of a CDW. The superconducting temperature has been estimated at Tc = 1.6 K. The experimental data from the inelastic instrument High Resolution Chopper Spectrometer (HRC) at the J-PARC neutron source are in good agreement with the theoretical simulations, showing the same energy levels for the polarization phonon modes (from 4 to 18 meV and from 32 to 42 meV). / Denna rapport presenterar en omfattande studie av enkristalls LaPt2Si2 i vilken supraledning och en laddningsdensitetsvåg (CDW) samexisterar. Användandet av DFT-modellering och neutronspridning har varit de huvudsakliga undersökningsmetoderna, för att bestämma alla karakteristiska drag hos det undersökta provet. Från resultaten kan observeras att den inneslutna Fermiytan är den huvudsakliga bidragaren till CDW-vågvektorn~qCDW = (1/3, 0, 0). Vidare visar den närvarande fonontillståndsdensiteten två typiska energinivåer, med mjuka lägen i Pt3-Pt4-skiktet, som stämmer överens med närvaron av en CDW. Den supraledande temperaturen har uppskattats till Tc = 1.6 K. Experimentella data från det inelastiska instrumentet HRC vid J-PARCs neutronkälla stämmer väl överens med teoretiska simuleringar, som visar samma energinivåer för polarisationsfononlägena (från 4 till 18 meV och från 32 till 42 meV).
|
5 |
Optical polarization anisotrop in nonpolar GaN thin films due to crystal symmetry and anisotropic strainMisra, Pranob 14 February 2006 (has links)
Diese Arbeit befasst sich mit den optischen Eigenschaften von dünnen GaN-Schichten gewachsen in verschiedenen Orientierungen. Hierbei werden die optischen Eigenschaften von verspannten M- und A-plane sowie unverspannten C-plane GaN-Schichten untersucht und die Ergebnisse im Rahmen von Bandstrukturberechnungen diskutiert. Im Rahmen dieser Arbeit werden die Bandstrukturverschiebungen theoretisch mittels eines k.p-Näherungsansatzes untersucht. Diese Bandverschiebungen beeinflussen sowohl die Übergangsenergien als auch die Oszillatorstärken. Man findet, dass die C-plane Schicht im Falle einer isotropen Verspannung in der Filmebene keine Anisotropie der optischen Polarisation zeigt. In beiden Fällen zeigen die drei Übergänge von den drei oberen Valenzbändern in das untere Leitungsband andere Polarisationseigenschaften als die entsprechenden Übergänge in C-plane GaN-Schichten. Es wird beobachtet, dass für einen bestimmten Wertebereich der Verspannung in der Filmebene diese Übergänge nahezu vollständig x-,z- bzw. y-artig polarisiert sind. Die verwendeten Schichten wurden auch mittels Transmissionspektroskopie untersucht. Im Falle der M-plane GaN-Schichten können zwei fundamentale Übergänge identifiziert werden, wobei der elektrische Feldvektor E des einfallenden Lichtes einmal parallel (z-Polarisation) und einmal senkrecht (x-Polarisation) auf der c-Achse steht. Die M-plane GaN-Schicht besitzt unterschiedliche Dielektrizitätskonstanten für z-Polarisation und x-Polarisation, welche zu zusätzlichem Dichroismus und Doppelbrechung führen. Als Resultat findet eine Filterung der Polarisation für einfallendes, linear polarisiertes Licht statt. Die elektrische Feldkomponente mit x-Polarisation wird stärker absorbiert als die Komponente mit z-Polarisation. Diese Polarisationsfilterung äußert sich für schmalbandiges Licht in Form einer Drehung der Polarisationsebene in Richtung der c-Achse, wobei ein maximaler Rotationswinkel von 40 Grad gefunden wurde. / In this work, we focus on the optical response of GaN thin films grown along various orientations. The optical properties of strained M- and A- and unstrained C-plane GaN thin films are investigated, and the results are explained with help of band-structure calculations. We calculate the strain-induced band-structure modification using the k.p perturbation approach. The valence-band (VB) states are modified affecting both the transition energies as well as the oscillator strengths. We observe that C-plane GaN does not show any in-plane polarization anisotropy, when an isotropic in-plane strain is applied. For the case of M- and A-plane GaN, one expects to see an in-plane polarization anisotropy even for the unstrained case. Additionally, the in-plane strain significantly changes the band structure and the symmetry of the VB states. The three transitions, involving electrons in the conduction band (CB) and holes in the top three VBs, will exhibit a very different polarization characteristic than the ones for C-plane GaN. These transitions are predominantly x, z, and y polarized, respectively, for a certain range of in-plane strain values, present in our samples. For M-plane GaN thin films, two fundamental transitions can be identified, which occur when the electric field vector E is perpendicular (x-polarization) and parallel c (z-polarization). These transitions give rise to a transmittance spectrum separated by 50 meV at room temperature with respect to each other. This result in a polarization filtering of an incident linearly polarized light beam after transmission, because the electric field component with x-polarization is more strongly absorbed than with z-polarization. This filtering manifests as a rotation of the polarization vector toward the c axis and can be as large as 40 degrees for an initial angle of 60 degrees, for our samples.
|
6 |
Untersuchung der elektronischen Struktur quasi-zweidimensionaler EinlagerungsverbindungenDanzenbächer, Steffen 13 November 2001 (has links) (PDF)
Thema der vorliegenden Arbeit ist die Untersuchung ausgewählter niederdimensionaler Schichtgittersysteme, wobei das Hauptinteresse in der Erforschung der elektronischen Struktur im Zusammenhang mit Interkalationsexperimenten liegt. Einkristalline Graphit-, TiSe2- und TaSe2-Proben wurden vor und nach der Interkalation mit winkelaufgelöster Photoemission, Fermi- und Isoenergieflächenmessungen und Elektronenbeugung (LEED) analysiert. Als Interkalationsmaterialien wurden U, Eu, Gd und Cs verwendet. Die experimentellen Daten wurden mit Ergebnissen von LDA-LCAO-Bandstrukturrechnungen und Simulationen im Rahmen eines Single-Impurity-Anderson-Modells verglichen. Neben dem Einfluß unterschiedlicher Valenzelektronen der interkalierten Atome auf den Einlagerungsprozeß werden Fragen zum Lokalisierungsverhalten von 4f- und 5f-Zuständen und zu den Veränderungen in der Dimensionalität der Verbindungen durch die Einlagerung diskutiert. Ein weiterer Schwerpunkt dieser Arbeit befaßt sich mit Untersuchungen zur temperaturabhängigen Ausbildung von Ladungsdichtewellen in 1T-TaSe2. / Subject of the present thesis are investigations of selected low-dimensional layered lattice systems, with the principal goal to study the electronic structure in relation to intercalation experiments. Single-crystalline graphite-, TiSe2 - and TaSe2- samples were analyzed by angle-resolved photoemission, Fermi- and isoenergy-surface measurements, and low energy electron diffraction experiments before and after intercalation. U, Eu, Gd, and Cs were used as materials for the intercalation process. The experimental results were compared with theoretical LDA-LCAO band-structure calculations and with simulations in the framework of a single-impurity Anderson model. In addition to the influence of different numbers of valence electrons from intercalated atoms, questions concerning the localization of 4f and 5f states and changes in the dimensionality of the compounds due to the intercalation process are discussed. Investigations of the temperature dependent formation of charge density waves in 1T-TaSe2 complete this work.
|
7 |
Untersuchung der elektronischen Struktur quasi-zweidimensionaler EinlagerungsverbindungenDanzenbächer, Steffen 29 November 2001 (has links)
Thema der vorliegenden Arbeit ist die Untersuchung ausgewählter niederdimensionaler Schichtgittersysteme, wobei das Hauptinteresse in der Erforschung der elektronischen Struktur im Zusammenhang mit Interkalationsexperimenten liegt. Einkristalline Graphit-, TiSe2- und TaSe2-Proben wurden vor und nach der Interkalation mit winkelaufgelöster Photoemission, Fermi- und Isoenergieflächenmessungen und Elektronenbeugung (LEED) analysiert. Als Interkalationsmaterialien wurden U, Eu, Gd und Cs verwendet. Die experimentellen Daten wurden mit Ergebnissen von LDA-LCAO-Bandstrukturrechnungen und Simulationen im Rahmen eines Single-Impurity-Anderson-Modells verglichen. Neben dem Einfluß unterschiedlicher Valenzelektronen der interkalierten Atome auf den Einlagerungsprozeß werden Fragen zum Lokalisierungsverhalten von 4f- und 5f-Zuständen und zu den Veränderungen in der Dimensionalität der Verbindungen durch die Einlagerung diskutiert. Ein weiterer Schwerpunkt dieser Arbeit befaßt sich mit Untersuchungen zur temperaturabhängigen Ausbildung von Ladungsdichtewellen in 1T-TaSe2. / Subject of the present thesis are investigations of selected low-dimensional layered lattice systems, with the principal goal to study the electronic structure in relation to intercalation experiments. Single-crystalline graphite-, TiSe2 - and TaSe2- samples were analyzed by angle-resolved photoemission, Fermi- and isoenergy-surface measurements, and low energy electron diffraction experiments before and after intercalation. U, Eu, Gd, and Cs were used as materials for the intercalation process. The experimental results were compared with theoretical LDA-LCAO band-structure calculations and with simulations in the framework of a single-impurity Anderson model. In addition to the influence of different numbers of valence electrons from intercalated atoms, questions concerning the localization of 4f and 5f states and changes in the dimensionality of the compounds due to the intercalation process are discussed. Investigations of the temperature dependent formation of charge density waves in 1T-TaSe2 complete this work.
|
Page generated in 0.1327 seconds