• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 8
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 79
  • 30
  • 22
  • 22
  • 17
  • 16
  • 14
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Virtual Modeling and Optimization of an Organic Rankine Cycle

Chandrasekaran, Vetrivel January 2014 (has links)
No description available.
32

Model Order Reduction and Control of an Organic Rankine Cycle Waste Heat Recovery System

Riddle, Derek S. January 2017 (has links)
No description available.
33

Modeling, Analysis, and Open-Loop Control of an Exhaust Heat Recovery System for Automotive Internal Combustion Engines

Owen, Ross P. 20 October 2011 (has links)
No description available.
34

A newly designed economizer to improve waste heat recovery: A case study in a pasteurized milk plant

Niamsuwan, S., Kittisupakorn, P., Mujtaba, Iqbal M. January 2013 (has links)
no / An economizer is normally employed to perform heat recovery from hot exhaust gases to cold fluid. In this work, a newly designed economizer is devised to achieve high heat recovery in a pasteurized milk plant. In the economizer, the hot exhaust gas is divided into two channels flowing up on the left and right sides. After that, it is moving down passing over aligned banks of tubes, which water is flowing inside, in a triple passes fashion. Moreover, three dimensional (3D) models with heat transfer including fluid dynamic have been developed, validated by actual plant data and used to evaluate the performance of the economizer. Simulation results indicate that the newly designed economizer can recover the heat loss of 38% and can achieve the cost saving of 13%.
35

Numerical and Experimental Design of High Performance Heat Exchanger System for A Thermoelectric Power Generator for Implementation in Automobile Exhaust Gas Waste Heat Recovery

Pandit, Jaideep 07 May 2014 (has links)
The effects of greenhouse gases have seen a significant rise in recent years due to the use of fossil fuels like gasoline and diesel. Conversion of the energy stored in these fossil fuels to mechanical work is an extremely inefficient process which results in a high amount of energy rejected in the form of waste heat. Thermoelectric materials are able to harness this waste heat energy and convert it to electrical power. Thermoelectric devices work on the principle of the Seebeck effect, which states that if two junctions of dissimilar materials are at different temperatures, an electrical potential is developed across them. Even though these devices have small efficiencies, they are still an extremely effective way of converting low grade waste heat to usable electrical power. These devices have the added advantage of having no moving parts (solid state) which contributes to a long life of the device without needing much maintenance. The performance of thermoelectric generators is dependent on a non-dimensional figure of merit, ZT. Extensive research, both past and ongoing, is focused on improving the thermoelectric generator's (TEG's) performance by improving this figure of merit, ZT, by way of controlling the material properties. This research is usually incremental and the high performance materials developed can be cost prohibitive. The focus of this study has been to improve the performance of thermoelectric generator by way of improving the heat transfer from the exhaust gases to the TEG and also the heat transfer from TEG to the coolant. Apart from the figure of merit ZT, the performance of the TEG is also a function of the temperature difference across it, By improving the heat transfer between the TEG and the working fluid, a higher temperature gradient can be achieved across it, resulting in higher heat flux and improved efficiency from the system. This area has been largely neglected as a source of improvement in past research and has immense potential to be a low cost performance enhancer in such systems. Improvements made through this avenue, also have the advantage of being applicable regardless of the material in the system. Thus these high performance heat exchangers can be coupled with high performance materials to supplement the gains made by improved figure of merits. The heat exchanger designs developed and studied in this work have taken into account several considerations, like pressure drop, varying engine speeds, location of the system along the fuel path, system stability etc. A comprehensive treatment is presented here which includes 3D conjugate heat transfer modeling with RANS based turbulence models on such a system. Various heat transfer enhancement features are implemented in the system and studied numerically as well as experimentally. The entire system is also studied experimentally in a scaled down setup which provided data for validation of numerical studies. With the help of measured and calculated data like temperature, ZT etc, predictions are also presented about key metrics of system performance. / Ph. D.
36

Kravspecificering av avgaspannor / Specification of requirements for waste heat recovery units

Paulin, Peter January 2009 (has links)
<p><p>This report describes the work of developing a specification of requirements for Waste Heat Recovery Units. The main part of the paper describes how the work with the specification of requirements has been performed. One specific question to be answered is:</p><p>What are the customer’s demands in case of properties for the Waste Heat Recovery Units and how is that information collected as an order documentation to suit the business area Oil & Gas?</p><p>The report begins with a description of the assignment and continues with the aim and background. A theoretical part describes the different areas and methods that have been important during the process. Work on the specification has been carried out on site at the company where interviews of staff and the study of internal documents has been a significant part of the implementation.</p><p>The result is delivered to the company in the form of a specification of requirements for the Waste Heat Recovery Unit. This specification fulfills the requirements set initially and is a good starting point for the company to proceed with in contact with subcontractors. The conclusion of the work is that the establishment of a good specification of requirements is really important and that has been obvious during the work and progress of this project. The difficulty lied in getting the right information and to keep it simple and at same time durable.</p></p>
37

Thermal energy recovery of low grade waste heat in hydrogenation process / Återvinning av lågvärdig spillvärme från en hydreringsprocess

Hedström, Sofia January 2014 (has links)
The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which contributes to the increase of the production costs and also impacts the environment. The simulation programs used in industrial engineering enable development and optimization of the operational processes in a cost-effective way. The company Chematur Engineering AB, which supplies chemical plants in many different fields of use on a worldwide basis, was interested in the investigation of the possibilities for effective waste heat recovery from the hydrogenation of dinitrotoluene, which is a sub-process in the toluene diisocyanate manufacture plant. The project objective was to implement waste heat recovery by application of the Organic Rankine Cycle and the Absorption Refrigeration Cycle technologies. Modeling and design of the Organic Rankine Cycle and the Absorption Refrigeration Cycle systems was performed by using Aspen Plus® simulation software where the waste heat carrier was represented by hot water, coming from the internal cooling system in the hydrogenation process. Among the working fluids investigated were ammonia, butane, isobutane, propane, R-123, R-134a, R-227ea, R-245fa, and ammonia-water and LiBr-water working pairs. The simulations have been performed for different plant capacities with different temperatures of the hydrogenation process. The results show that the application of the Organic Rankine Cycle technology is the most feasible solution where the use of ammonia, R-123, R-245fa and butane as the working fluids is beneficial with regards to power production and pay-off time, while R-245fa and butane are the most sustainable choices considering the environment.
38

Contribution to the study of waste heat recovery systems on commercial truck diesel engines / Contribution à l'étude de systèmes de récupération d'énergie sur moteur Diesel de véhicules industriels

Espinosa, Nicolas 24 October 2011 (has links)
L'augmentation du prix du pétrole ainsi qu'une possible future réglementation des émissions de CO2 encourage les fabricants de véhicules industriels à trouver de nouvelles solutions pour améliorer encore la performance de la chaine cinématique. Dans ce cadre, deux solutions de récupérations d'énergie prometteuses sont très souvent rapportées dans la littérature: le système de récupération d'énergie par cycle de Rankine et le générateur thermoélectrique. Après un rappel des conditions limites du fonctionnement d'un camion long routier, cette thèse démontre tout d’abord la modélisation 0-D et 1-D (logiciels commerciaux utilisés) de ces deux systèmes de récupération d’énergie. Pour le générateur thermoélectrique, des études paramétriques (hauteur de jambe thermoélectrique, prix, puissance électrique produite) sont effectuées se basant principalement sur l'utilisation de deux matériaux prometteurs. Une conception du système Rankine est présentée et modélisée avec le solveur 1-D. Des validations partielles sont réalisées sur les composants (turbine). Ce modèle a ensuite permis d'étudier les transitoires du système ainsi que la charge en réfrigérant et un système de contrôle possible. Cette étude montre que le générateur thermoélectrique n’est pas encore mature pour son utilisation dans un camion long routier. Le système Rankine doit quant à lui être testé sur un camion prototype pour pouvoir véritablement estimer son potentiel final / Fuel price increase as well as future fuel consumption regulations lead truck manufacturers to further enhance the current powertrain. In such a context, two waste heat recovery technologies appear as promising: the Rankine system as well as the thermoelectric generator. After a reminding of truck boundary conditions, this thesis work defines 0-D and 1-D modeling (commercial tool used) for both systems.For the thermoelectric generator , parametric 1-D studies are done on the integration/design (number of thermoelements, price, electrical power) of a thermoelecric generator upstream the existing engine exhaust gas recirculation cooler. Main studies are done with thermoelectric materials but other materials are also considered. A Rankine system design is presented and modeled under a 1-D solver. Preliminary validations are presented. Transient aspects are evaluated to better understand the behavior of the system and its bottlenecks. The amount of refrigerant in the circuit and the control schematic are also addressed.From these studies, it appears that the thermoelectric generator technology is not yet mature for a long haul truck due to the low performance of thermoelectric materials. The Rankine system technology should handle a complete truck prototype testing to estimate its potential
39

Etude des machines à absorption pour la valorisation de la chaleur fatale basse température / Study of absorption cycles used for low grade waste heat valorization

Wakim, Michel 15 November 2017 (has links)
Cette thèse vise à étudier la valorisation des rejets thermiques de basse température (inférieure à 100 °C) par les machines à absorption, dont principalement les transformateurs de chaleur à absorption (AHT) pour générer de la chaleur à une température plus élevée, et les cycles de réfrigération par absorption (ARC) pour la production de frigories. Les performances des machines à absorption sont exprimées suivant les températures et les COP qu’elles peuvent atteindre. Ces deux paramètres dépendent de l’architecture de la machine, des composants utilisés et de la paire de fluides réfrigérant-absorbant circulant dans la machine. L’objectif principal de ce travail est une nouvelle génération d’AHT qui puisse rendre utile la chaleur avec une différence de température par rapport à la source de chaleur disponible (rejet thermique) d’au moins 50°C. Pour l‘ARC, on cible une nouvelle génération de cycles capables de produire des frigories à une température inférieure à -20°C.Les résultats obtenus représentent une avancée majeure dans le domaine des cycles à absorption. En effet, les objectifs fixés de valorisation de chaleur basse température, jusqu’à 45°C, en rendant disponible de la chaleur haute température (supérieure à 120°C) et basse température (inférieure à -20°C) ont été atteints. Ceci représente une différence de température entre le rejet thermique et la chaleur utile de 75°C minimum. L’utilisation d’éjecteurs avec certains fluides de travail a permis le développement d'une nouvelle génération de cycles à absorption. / This thesis aims at studying the low temperature waste heat recovery (less than 100°C) by the use of absorption machines, mainly absorption heat transformers (AHT) to generate heat at a higher temperature, and absorption refrigeration cycles (ARC) to generate chilling power. The performances of absorption machines are expressed according to the temperatures and the COPs which they can reach. These two parameters depend on the cycle configuration, the components used and the refrigerant-absorbent pair of fluids circulating in the machine. The main objective of this work is a new generation of AHT which can produce heat with a difference in temperature compared to the available heat source (heat rejection) of at least 50°C. For the ARC, a new generation of cycles capable of producing chilling power at temperatures lower than -20°C is aimed.The results obtained represent a major progress in the absorption cycles field. The objectives set for this work of low temperature heat recovery, up to 45°C, by making available high temperature heat (above 120°C) and low temperature (below -20°C) have been achieved. This represents a minimal temperature difference between the waste heat and the useful heat of 75°C. The use of ejectors with specific working fluids allowed the development of a new generation of absorption cycles.
40

Modélisation et optimisation d’un système de récupération d’énergie à l’échappement des moteurs de navires en utilisant la thermoélectricité (effet Seebeck) / Modeling and optimization of waste heat recovery system using the thermoelectricity (Seebeck effect) for marine application

Nour Eddine, Ali 25 October 2017 (has links)
Les gaz contenus dans les lignes d’échappement des moteurs Diesel pour la propulsion maritime peuvent atteindre des températures de l’ordre de 400 – 450 °C à la sortie du turbocompresseur. Une des voies possibles pour récupérer une partie de l’énergie contenue dans les gaz d’échappement est la thermoélectricité (effet Seebeck)avec des matériaux thermoélectriques côté chaud entre200 et 300 °C. Ce niveau de température correspond à des matériaux ayant de bonnes performances de conversion chaleur / électricité. De plus, l’eau de mer présente en abondance est une excellente source froide pour un générateur thermoélectrique (TEG). Par ailleurs, la consommation en carburant du moteur thermique est un poste de dépense majeure pour l’opérateur du bateau, et une réduction de cette consommation, même minime, peut générer des économies financières importantes.L’objectif de la thèse est de comprendre et analyser le fonctionnement d’un échangeur thermoélectrique,notamment en présence d’écoulement pulsés afin d’optimiser le fonctionnement du générateur thermoélectrique. A ce titre, plusieurs campagnes d’essais sur des maquettes de TEG ont été mises en place sur trois bancs d’essais (conçus particulièrement pour les travaux de thèse) où des mesures thermiques et électriques ont été réalisées. Le but de ces essais a été de tester les performances des modules thermoélectriques et les différents types d’échangeurs sur les points de fonctionnement d’un moteur Diesel pour déterminer (dans un premier temps) lesquels étaient les plus adaptés au fonctionnement moteur. Dans un second temps, les effets de la composition des gaz d’échappement et des écoulements pulsés sur le fonctionnement du TEG ont été étudiés. Un modèle de simulation a également été développé afin de modéliser le fonctionnement d’un générateur thermoélectrique. Des essais ont été réalisés afin de calibrer le modèle de simulation. / Thermoelectric energy (TE) harvesting (Seebeck effect)is a promising solution for waste heat recovery onboard ocean-going ships. On one hand, the marine Diesel engines reach around 400-450°C temperature at the turbocharger exhaust, corresponding to around 200-300°C on the hot side thermoelectric module (TEM)temperature, which is interesting according to recent studies on intermediate temperatures TE materials. In addition, seawater is available in abundance at low temperature, and represents an excellent heat sink. On the other hand, engine fuel consumption accounts today almost 50 % of ship operational costs; hence, a slight reduction of fuel consumption generates significant financial savings over the year.The objective of the Thesis is to understand and analyze the operation of a thermoelectric heat exchanger, especially in the presence of pulsations and to optimize the thermoelectric generator (TEG). Several test campaigns leading to different thermal and electrical measurement have been conducted. The campaigns were set up on three different test benches designed and fabricated during the thesis. The aim of these tests was to optimize the type of TEM’s and heat exchangers for Diesel engine application by investigating it’s the performances on engine operating points. In a second step, the effects of exhaust gas composition and pulsation flow on the TEG performances were investigated. A simulation model was developed to model the operation of a TEG. Tests were conducted to calibrate the simulation model.

Page generated in 0.0926 seconds