• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A WATER QUALITY INTERNSHIP WITH THE OHIO ENVIRONMENTAL PROTECTION AGENCY’S DIVISION OF SURFACE WATER

Speakman, Anne Kathryn 02 December 2014 (has links)
No description available.
12

A BIOLOGICAL MONITORING INTERNSHIP WITH THE OHIO ENVIRONMENTAL PROTECTION AGENCY, DIVISION OF SURFACE WATER

Longsmith, Rebecca Johnson 11 January 2016 (has links)
No description available.
13

Development and application of a new passive sampling device : the lipid-free tube (LFT) sampler

Quarles, Lucas W. 29 September 2009 (has links)
Contaminants can exist in a wide range of states in aqueous environments, especially in surface waters. They can be freely dissolved or associated with dissolved or particulate organic matter depending on their chemical and physical characteristics. The freely dissolved fraction represents the most bioavailable fraction to an organism. These freely dissolved contaminants can cross biomembranes, potentially exerting toxic effects. Passive sampling devices (PSDs) have been developed to aid in sampling many of these contaminants by having the ability to distinguish between the freely dissolved and bound fraction of a contaminant. A new PSD, the Lipid-Free Tube (LFT) sampler was developed in response to some of the shortcomings of other current PSD that sample hydrophobic organic contaminants (HOCs). The device and laboratory methods were original modeled after a widely utilized PSD, the semipermeable membrane device (SPMD), and then improved upon. The effectiveness, efficiency, and sensitivity of not only the PSD itself, but also the laboratory methods were investigated. One requirement during LFT development was to ensure LFTs could be coupled with biological analyses without deleterious results. In an embryonic zebrafish developmental toxicity assay, embryos exposed to un-fortified LFT extracts did not show significant adverse biological response as compared to controls. Also, LFT technology lends itself to easy application in monitoring pesticides at remote sampling sites. LFTs were utilized during a series of training exchanges between Oregon State University and the Centre de Recherches en Ecotoxicologie pour le Sahel (CERES)/LOCUSTOX laboratory in Dakar, Senegal that sought to build "in country" analytical capacity. Application of LFTs as biological surrogates for predicting potential human health risk endpoints, such as those in a public health assessment was also investigated. LFT mass and accumulated contaminant masses were used directly, representing the amount of contaminants an organism would be exposed to through partitioning assuming steady state without metabolism. These exposure concentrations allow for calculating potential health risks in a human health risk model. LFT prove to be a robust tool not only for assessing bioavailable water concentrations of HOCs, but also potentially providing many insights into the toxicological significance of aquatic contaminants and mixtures. / Graduation date: 2010
14

VLIV LAND USE NA VYTĚŽENÉ PÍSKOVNY V OBLASTI VESELÍ NAD LUŽNICÍ / Impact of land use on the former sand-pits in the region of Veselí nad Lužnicí

NOVÁK, Ondřej January 2009 (has links)
Sand-pits which were formed especially in the floodplain of the Lužnice River since the 1950s currently constitute important landscape element of the Třeboň Basin. My diploma thesis is focused on the assessment of the impact of land use on the former sand-pits in the region of Veselí nad Lužnicí. Field investigations were carried out from the beginning of June till the end of August 2008. I mapped the land use of this area by using a map key. I put down particular areas {--} agricultural areas, forest areas, water areas, bild-up areas, other areas {--} into map photographs. The total area of the mapped territory was 989 hecteres. The biggest part of the area comprises of forest growths and field-grown plants. Water areas (with the main element of the mapped area {--} a system of former sandpits) formed 23% of the total area. On the bank sof the sand-pits were placed phytosociological relevé, which illustrated littoral vegetation and environment in which this vegetation is located, and what is the influence of human activity on vegetation. I placed 74 phytosociological relevé in this system. I recorded 125 plant species {--} out of these were 104 herb plants and 21 woody species. I recorded 41 nitrophilous, 52 wetland, 16 ruderal and 2 stronngly endangered species. Altogether, 20 water samplings were carried out. Horusice I sand-pit is the richest in nutrient, the poorest in nutrients is Horusice sand-pit.
15

Localização ótima de estações de monitoramento de qualidade em redes de distribuição de água / Optimal location of quality monitoring stations in water distribution networks

Suse, Roberto, 1980- 25 August 2018 (has links)
Orientador: Edevar Luvizotto Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-25T02:11:35Z (GMT). No. of bitstreams: 1 Suse_Roberto_M.pdf: 6029158 bytes, checksum: 0a46cab6e6d5a63e2adc86fb686afb8a (MD5) Previous issue date: 2014 / Resumo: A qualidade da água potável transportada em uma rede de distribuição deve ser monitorada para identificar condições que possam comprometer a saúde da população atendida. Este monitoramento deve servir como um mecanismo para detectar a ocorrência de problemas de contaminação da água em seus primeiros estágios. As estações devem ser localizadas de forma a garantir a representatividade espacial e temporal da rede monitorada, ou seja, a análise dos pontos monitorados deve permitir avaliar a qualidade da água de toda a rede de distribuição ao longo do tempo. Diversos pesquisadores mencionam a necessidade em utilizar a modelagem matemática associada aos programas computacionais que simulam o comportamento da água nas redes para identificar a quantidade e os melhores locais para as estações de monitoramento. Entretanto, a aplicação destas ferramentas, para descrever o comportamento hidráulico e qualitativo da água nas redes de distribuição, pode ser considerada útil se e somente se as vazões, o sentido do escoamento e a demanda de água na rede de distribuição forem avaliados. Por estas razões, o objetivo deste trabalho de mestrado foi o desenvolvimento de uma ferramenta computacional com o intuito de contribuir nas investigações relacionadas ao importante tema da qualidade da água transportada pelas redes de distribuição. A ferramenta computacional foi baseada no conceito de cobertura de demanda, contém rotinas de otimização decorrente do algoritmo genético e foi acoplada ao simulador hidráulico EPANET. Para a avaliação da ferramenta computacional, foram estudadas duas redes hipotéticas de distribuição de água. A primeira é composta por três reservatórios de nível fixo, quinze pontos de consumo e vinte e três tubulações. Foi verificada a relação entre a variação da demanda de água e critério de fração de água sobre o conjunto ótimo de estações de monitoramento sugerido pela ferramenta computacional. A segunda é composta por um reservatório de nível fixo, dezenove pontos de consumo e trinta e quatro tubulações. Foi avaliada a quantidade mínima de estações de monitoramento necessárias para fazer a cobertura de toda a rede de distribuição de água. Os resultados obtidos corroboram a viabilidade da proposição do conceito de cobertura de demanda. Evidencia-se que a localização adequada das estações de monitoramento deve ser obtida após análise da rede de distribuição de água ao longo de um dia típico de funcionamento / Abstract: The quality of drinking water transported in a water distribution system must be monitored to identify conditions that may compromise the health of the population supplied. This monitoring should be a mechanism to detect the occurrence of trouble of water contamination in early stages. The stations must be located in order to ensure spatial and temporal representation of water in the network, i.e., the analysis of the samples must allow assessment of water quality throughout the distribution network over time. Several researchers talk about the need of using mathematical models associated with computer programs (that simulate the behavior of water in the networks) to identify the quantity and the best places for monitoring stations. However, the application of these tools to describe both the hydraulic and water quality behavior in water distribution networks can be useful if the flow rates, the flow direction and water demand have been quantified. For these reasons, the aim of this master degree work was the development of a computational tool in order to contribute to the investigation about the important theme of water quality transported into the water distribution networks (WDN). The computational tool was based on the concept of coverage demand, it includes optimization routines that are deriving of genetic algorithms and it was linked up to the hydraulic simulator EPANET. For the evaluation of the computational tool, two hypothetical water distribution networks (HWDN) had studied. The first one consists for three tanks with fixed level consumption, fifteen junctions and twenty three pipes. It was checked the relationship out between the variation of water demand and water fraction criteria under the optimal set of monitoring stations suggested by the computational tool. The second one consists for one tank with fixed level consumption, nineteen junctions and thirty four pipes. It was evaluated the minimum amount of monitoring stations required to cover the entire HWDN. The results support the feasibility of the proposition of coverage demand concept. Evidently, the adequate location of monitoring stations must be getting after anaysis of the WDN over a typical day of operation / Mestrado / Saneamento e Ambiente / Mestre em Engenharia Civil
16

Natural hydrate-bearing sediments: Physical properties and characterization techniques

Dai, Sheng 27 August 2014 (has links)
An extensive amount of natural gas trapped in the subsurface is found as methane hydrate. A fundamental understanding of natural hydrate-bearing sediments is required to engineer production strategies and to assess the risks hydrates pose to global climate change and large-scale seafloor destabilization. This thesis reports fundamental studies on hydrate nucleation, morphology and the evolution of unsaturation during dissociation, followed by additional studies on sampling and pressure core testing. Hydrate nucleation is favored on mineral surfaces and it is often triggered by mechanical vibration. Continued hydrate crystal growth within sediments is governed by capillary and skeletal forces; hence, the characteristic particle size d10 and the sediment burial depth determine hydrate morphologies in natural sediments. In aged hydrate-bearing sand, Ostwald ripening leads to patchy hydrate formation; the stiffness approaches to the lower bound at low hydrate saturation and the upper bound at high hydrate saturation. Hydrate saturation and pore habit alter the pore size variability and interconnectivity, and change the water retention curve in hydrate-bearing sediments. The physical properties of hydrate-bearing sediments are determined by the state of stress, porosity, and hydrate saturation. Furthermore, hydrate stability requires sampling, handling, and testing under in situ pressure, temperature, and stress conditions. Therefore, the laboratory characterization of natural hydrate-bearing sediments faces inherent sampling disturbances caused by changes in stress and strain as well as transient pressure and temperature changes that affect hydrate stability. While pressure core technology offers unprecedented opportunities for the study of hydrate-bearing sediments, careful data interpretation must recognize its inherent limitations.
17

異なる採取法による土壌水中の溶存無機イオン濃度の違い

竹井, 理絵, TAKEI, Rie, 辻村, 真貴, TSUJIMURA, Maki, 高木, 丈子, TAKAGI, Takeko 12 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
18

Acceleration of Phosphorus Flux from Anoxic Sediments in a Warming Lake Erie

Swan, Zachary January 2021 (has links)
No description available.
19

Effect of a Grass and Soil Filter on Tucson Urban Runoff: A Preliminary Evaluation

Popkin, Barney Paul 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Storm runoff from the Tucson metropolitan area is unsuitable for most uses without processing. A lysimeter comprised of a grass and soil filter was constructed and is being evaluated as a water-quality treatment facility. The lysimeter is 200 feet long, 4 feet wide and 5 feet deep, and contains homogeneous calcareous loam covered by common grasses. Experimental apparatus was installed to divert less than a cubic foot per second of runoff from urbanized Arcadia Watershed. Runoff flows by gravity over the lysimeter, where surface inflow, surface outflow and subsurface outflow are measured and sampled. Four trials, each associated with a discrete runoff event, were conducted in the fall of 1971. Water samples were analyzed for inorganic chemical constituents, chemical oxygen demand (COD), coliforms, turbidity and sediment contents. Subsurface-outflow samples from initial trials were high in COD and total dissolved solids, representing soil flushing or leaching. Concentrations of inorganics reached a maximum value within a few hours of initial seepage, and then decreased. The peaking represents a salt build-up between trials. Concentrations of COD, coliforms, turbidity and sediment in subsurface-outflow samples decreased significantly during each trial. Surface-outflow samples had lower turbidity, COD, bacteria and sediment contents than surface-inflow samples. Turbidity, suspended and volatile solids, coliforms and COD in runoff samples may be reduced by grass and soil filtration. Increased grass development and soil settling work to produce a better quality effluent. Quantification of the lysimeter's effectiveness will be useful for urban watershed management.
20

Nitrogen Species Transformations of Sewage Effluent Releases in a Desert Stream Channel

Sebenik, P. G., Cluff, C. B., DeCook, K. J. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / A preliminary study was made with the objective of examining nitrogen species transformations of treated sewage effluent releases within the channel of an ephemeral stream, the Santa Cruz River of southern Arizona. Water quality samples were taken at established locations in sequence so that peak daily flows could be traced as the effluent moved downstream. Results indicate that increased nitrification, coinciding with changing stream characteristics, starts in the vicinity of Cortaro Road (6.3 river miles from the Tucson Sewage Treatment Plant discharge). Through physical-chemical changes in streamflow, nitrate -nitrogen values reach a maximum at approximately 90-95 percent and 60-80 percent of total flow distance for low flows and high flows, respectively. Concentrations of ammonia-nitrogen and total nitrogen decrease continuously downstream with both high and low flows. Therefore, the rate of nitrification within sewage effluent releases in a desert stream channel evidently is related to flow distance and physical characteristics of the stream.

Page generated in 0.1063 seconds