Spelling suggestions: "subject:"water 2security"" "subject:"water bsecurity""
71 |
Water Situation In China - Crisis Or Business As Usual?Leong, Elaine January 2013 (has links)
Several studies indicates China is experiencing a water crisis, were several regions are suffering of severe water scarcity and rivers are heavily polluted. On the other hand, water is used inefficiently and wastefully: water use efficiency in the agriculture sector is only 40% and within industry, only 40% of the industrial wastewater is recycled. However, based on statistical data, China’s total water resources is ranked sixth in the world, based on its water resources and yet, Yellow River and Hai River dries up in its estuary every year. In some regions, the water situation is exacerbated by the fact that rivers’ water is heavily polluted with a large amount of untreated wastewater, discharged into the rivers and deteriorating the water quality. Several regions’ groundwater is overexploited due to human activities demand, which is not met by local. Some provinces have over withdrawn groundwater, which has caused ground subsidence and increased soil salinity. So what is the situation in China? Is there a water crisis, and if so, what are the causes?This report is a review of several global water scarcity assessment methods and summarizes the findings of the results of China’s water resources to get a better understanding about the water situation. All of the methods indicated that water scarcity is mainly concentrated to north China due to rapid growth, overexploitation from rivers and reduced precipitation. Whereas, South China is indicated as abundant in water resources, however, parts of the region are experiencing water scarcity due to massive dam constructions for water storage and power production. Too many dam constructions in a river disrupts flow of the river water and pollutants are then accumulated within floodgates.Many Chinese officials and scholars believe that with economic growth comes improved environmental quality when the economy has reached to a certain of per-capita level. However, with the present water situation it is not sustainable or possible for China to keep consuming and polluting its water resources. Improvement of environmental quality does not come automatically with increased income, and policies, laws and regulations are needed in order to stop further deterioration of the environment.China’s water situation is not any news and the key factor is human activities, but the question is how to solve it. China’s water crisis is much more complex than over exploitation of groundwater and surface water. There are three water issues in China: “too much water – floods, too little water – droughts, and too dirty water – water pollution” (Jun & Chen, 2001). Thus, solving China’s water crisis is a huge challenge to solve without negatively affecting the economic growth.
|
72 |
Climate variability and climate change in water resources management of the Zambezi River basinTirivarombo, Sithabile January 2013 (has links)
Water is recognised as a key driver for social and economic development in the Zambezi basin. The basin is riparian to eight southern African countries and the transboundary nature of the basin’s water resources can be viewed as an agent of cooperation between the basin countries. It is possible, however, that the same water resource can lead to conflicts between water users. The southern African Water Vision for ‘equitable and sustainable utilisation of water for social, environmental justice and economic benefits for the present and future generations’ calls for an integrated and efficient management of water resources within the basin. Ensuring water and food security in the Zambezi basin is, however, faced with challenges due to high variability in climate and the available water resources. Water resources are under continuous threat from pollution, increased population growth, development and urbanisation as well as global climate change. These factors increase the demand for freshwater resources and have resulted in water being one of the major driving forces for development. The basin is also vulnerable due to lack of adequate financial resources and appropriate water resources infrastructure to enable viable, equitable and sustainable distribution of the water resources. This is in addition to the fact that the basin’s economic mainstay and social well-being are largely dependent on rainfed agriculture. There is also competition among the different water users and this has the potential to generate conflicts, which further hinder the development of water resources in the basin. This thesis has focused on the Zambezi River basin emphasising climate variability and climate change. It is now considered common knowledge that the global climate is changing and that many of the impacts will be felt through water resources. If these predictions are correct then the Zambezi basin is most likely to suffer under such impacts since its economic mainstay is largely determined by the availability of rainfall. It is the belief of this study that in order to ascertain the impacts of climate change, there should be a basis against which this change is evaluated. If we do not know the historical patterns of variability it may be difficult to predict changes in the future climate and in the hydrological resources and it will certainly be difficult to develop appropriate management strategies. Reliable quantitative estimates of water availability are a prerequisite for successful water resource plans. However, such initiatives have been hindered by paucity in data especially in a basin where gauging networks are inadequate and some of them have deteriorated. This is further compounded by shortages in resources, both human and financial, to ensure adequate monitoring. To address the data problems, this study largely relied on global data sets and the CRU TS2.1 rainfall grids were used for a large part of this study. The study starts by assessing the historical variability of rainfall and streamflow in the Zambezi basin and the results are used to inform the prediction of change in the future. Various methods of assessing historical trends were employed and regional drought indices were generated and evaluated against the historical rainfall trends. The study clearly demonstrates that the basin has a high degree of temporal and spatial variability in rainfall and streamflow at inter-annual and multi-decadal scales. The Standardised Precipitation Index, a rainfall based drought index, is used to assess historical drought events in the basin and it is shown that most of the droughts that have occurred were influenced by climatic and hydrological variability. It is concluded, through the evaluation of agricultural maize yields, that the basin’s food security is mostly constrained by the availability of rainfall. Comparing the viability of using a rainfall based index to a soil moisture based index as an agricultural drought indicator, this study concluded that a soil moisture based index is a better indicator since all of the water balance components are considered in the generation of the index. This index presents the actual amount of water available for the plant unlike purely rainfall based indices, that do not account for other components of the water budget that cause water losses. A number of challenges were, however, faced in assessing the variability and historical drought conditions, mainly due to the fact that most parts of the Zambezi basin are ungauged and available data are sparse, short and not continuous (with missing gaps). Hydrological modelling is frequently used to bridge the data gap and to facilitate the quantification of a basin’s hydrology for both gauged and ungauged catchments. The trend has been to use various methods of regionalisation to transfer information from gauged basins, or from basins with adequate physical basin data, to ungauged basins. All this is done to ensure that water resources are accounted for and that the future can be well planned. A number of approaches leading to the evaluation of the basin’s hydrological response to future climate change scenarios are taken. The Pitman rainfall-runoff model has enjoyed wide use as a water resources estimation tool in southern Africa. The model has been calibrated for the Zambezi basin but it should be acknowledged that any hydrological modelling process is characterised by many uncertainties arising from limitations in input data and inherent model structural uncertainty. The calibration process is thus carried out in a manner that embraces some of the uncertainties. Initial ranges of parameter values (maximum and minimum) that incorporate the possible parameter uncertainties are assigned in relation to physical basin properties. These parameter sets are used as input to the uncertainty version of the model to generate behavioural parameter space which is then further modified through manual calibration. The use of parameter ranges initially guided by the basin physical properties generates streamflows that adequately represent the historically observed amounts. This study concludes that the uncertainty framework and the Pitman model perform quite well in the Zambezi basin. Based on assumptions of an intensifying hydrological cycle, climate changes are frequently expected to result in negative impacts on water resources. However, it is important that basin scale assessments are undertaken so that appropriate future management strategies can be developed. To assess the likely changes in the Zambezi basin, the calibrated Pitman model was forced with downscaled and bias corrected GCM data. Three GCMs were used for this study, namely; ECHAM, GFDL and IPSL. The general observation made in this study is that the near future (2046-2065) conditions of the Zambezi basin are expected to remain within the ranges of historically observed variability. The differences between the predictions for the three GCMs are an indication of the uncertainties in the future and it has not been possible to make any firm conclusions about directions of change. It is therefore recommended that future water resources management strategies account for historical patterns of variability, but also for increased uncertainty. Any management strategies that are able to satisfactorily deal with the large variability that is evident from the historical data should be robust enough to account for the near future patterns of water availability predicted by this study. However, the uncertainties in these predictions suggest that improved monitoring systems are required to provide additional data against which future model outputs can be assessed.
|
73 |
Water security amongst impoverished households in the Sundays River Valley Municipality : community experiences and perspectivesMolony, Lara January 2015 (has links)
Water security is influenced by the complex interplay between ecological, socio-political, governance and water management systems. Achieving water security is essential for ensuring sustainable development, and challenges with water security are closely linked to the overall experience of poverty that many countries throughout the world, including South Africa, confront. These problems can broadly be understood through three main factors: water availability, access and usage; water governance and management underpin these factors. Water insecurity can often be seen in townships within South Africa, where water service delivery and water access is precarious. This study provides a lens into the water security experiences of two poor township communities in the Sundays River Valley Municipality (SRVM) namely Nomathamsanqa in Addo and Aquapark in Kirkwood. The research assessed water security patterns amongst RDP, township and informal settlement households serviced by the SRVM and found that communities face severe water security problems. Specifically, it was found that all township households encounter frequent water shortages, cuts in municipal water supply and water quality concerns. Issues around the payment for water and dissatisfaction with water service delivery also emerged. The purpose of this research was to allow for community experiences and perspectives to be expressed in an academic space that has previously been dominated by water management and policy makers. The study concludes that these communities within the SRVM experience significant challenges in securing safe water and these are largely due to social water scarcity issues and the difficulties the municipality faces concerning water service delivery.
|
74 |
Water crisis in cities : an investigation into the contribution of water demand management towards mitigating the scarcity of potable water in the city of BulawayoKhumalo, Sihlanganiso 11 1900 (has links)
The study investigates the contribution of WDM towards mitigating scarcity of potable water in cities with particular reference to Bulawayo.WDM origins and its successes are traced. The study classifies scarcity representations into four categories and reveals that the scarcity in Bulawayo satisfies all the four representations hence calls it total scarcity. The research employed document study, questionnaires, interviews and a focus group to collect data. Document study revealed that water restrictions successfully mitigate the scarcity in Bulawayo. Field work partially confirmed the usefulness of WDM in the life of the city and revealed the need to synchronize the conceptualizations of WDM among different stakeholders in order for the paradigm to do even more in terms of mitigating scarcity. The results were interpreted in terms of TPB. The key recommendation of the study is that the city invests in water use behaviour change in order to realise huge water savings. / Development Studies / M.A. (Development Studies)
|
75 |
Water crisis in cities : an investigation into the contribution of water demand management towards mitigating the scarcity of potable water in the city of BulawayoKhumalo, Sihlanganiso 11 1900 (has links)
The study investigates the contribution of WDM towards mitigating scarcity of potable water in cities with particular reference to Bulawayo.WDM origins and its successes are traced. The study classifies scarcity representations into four categories and reveals that the scarcity in Bulawayo satisfies all the four representations hence calls it total scarcity. The research employed document study, questionnaires, interviews and a focus group to collect data. Document study revealed that water restrictions successfully mitigate the scarcity in Bulawayo. Field work partially confirmed the usefulness of WDM in the life of the city and revealed the need to synchronize the conceptualizations of WDM among different stakeholders in order for the paradigm to do even more in terms of mitigating scarcity. The results were interpreted in terms of TPB. The key recommendation of the study is that the city invests in water use behaviour change in order to realise huge water savings. / Development Studies / M.A. (Development Studies)
|
Page generated in 0.0619 seconds