• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 9
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 45
  • 37
  • 28
  • 27
  • 23
  • 22
  • 19
  • 16
  • 16
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Dirhodium(II,II) Complexes as Electrocatalysts for Sustainable Energy Applications: Tunable Selectivity For H<sup>+</sup> or CO<sub>2</sub> Reduction

Witt, Suzanne Elizabeth January 2017 (has links)
No description available.
102

Design and Synthesis of Mixed-Metal Supramolecular Complexes Incorporating Specialized Light Absorbing Units to Investigate Processes Relevant to Catalyst Function

Wagner, Alec T. 15 June 2015 (has links)
The goal of this research was to develop a series of mixed-metal supramolecular complexes with specialized light absorbing units to probe perturbation of excited-state properties by ligand deuteration and long-term complex stability via racemization of initially enantiopure light absorbing subunits. Varying bidentate polypyridyl terminal ligands (TL), bridging ligands (BL), reactive metal center (RM), or number of Ru(II) light absorbers (LA) tunes the electrochemical, spectroscopic, photophysical, and photochemical properties within the supramolecular architecture. Ru(II) monometallics of the design [(bpy)2Ru(prolinate)](PF6) utilize prolinate as a chiral directing ligand to impart chirality to the Ru(II) LAs in the synthesis of more sophisticated supramolecular complexes. Ru(II) monometallics of the design [(TL)2Ru(BL)](PF6)2 (TL = bpy or d8-bpy; BL = dpp or d10-dpp; bpy = 2,2′-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) covalently couple two TLs and one BL to a central Ru(II) metal center forming a LA subunit. Larger bi- and trimetallic complexes are formed by coupling an additional Ru(II), Rh(III), or Pt(II) metal center to an existing Ru(II) LA through a BL. Ru(II),Ru(II), Ru(II),Rh(III), and Ru(II),Pt(II) bimetallics of the design [(TL)2Ru(BL)Ru(TL)2](PF6)4, [(TL)2Ru(BL)RhCl2(TL′)](PF6)3, and [(TL)2Ru(BL)PtCl2](PF6)2 (TL/TL′ = bpy or d8-bpy; BL = dpp or d10-dpp) couple only one Ru(II) LA to a Ru(II), Rh(III), or Pt(II) metal center through the BL. Ru(II),Rh(III),Ru(II) trimetallics of the design [{(TL)2Ru(BL)}2RhCl2](PF6)5 (TL = bpy or d8-bpy; BL = dpp or d10-dpp) covalently couple two Ru(II) LAs to a central Rh(III) RM through polyazine BLs. The complexes discussed herein are synthesized using a building block approach, permitting modification of the supramolecular architecture through multiple synthetic steps. Electrochemical analysis of the mono-, bi-, and trimetallic complexes displays several common features: a Ru-based HOMO and either a bridging ligand or Rh-based LUMO. TL and BL modification by ligand deuteration does not affect the electrochemistry of the Ru(II), Ru(II),Ru(II), Ru(II),Rh(III), or Ru(II),Rh(III),Ru(II) complexes. Likewise, utilizing a single enantiomer of the LA subunit does not modify the redox behavior of Ru(II), Ru(II),Pt(II), or Ru(II),Rh(III),Ru(II) complexes. All of the mono-, bi-, and trimetallic complexes are efficient light absorbers throughout the UV and visible with π→π* intraligand (IL) transitions in the UV and Ru(dπ)→ligand(π*) metal-to-ligand charge transfer (MLCT) transitions in the visible. Ligand deuteration does not affect the light absorbing properties of the complexes, while incorporation of chiral LA subunits imparts a preference for circularly polarized light (CPL) absorbance into supramolecular complexes. Photoexcitation of the Ru(dπ)→dpp(π*) 1MLCT results in near unity population of short-lived, weakly emissive Ru(dπ)→dpp(π*) ³MLCT excited state. In the Ru(II), Ru(II),Ru(II), and Ru(II),Pt(II) complexes, the 3MLCT excited state relaxes to the ground state by emission of a photon or vibrational relaxation processes. In the Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes, the 3MLCT excited state is efficiently quenched by intramolecular electron transfer to populate a non-emissive Ru(dπ)→'Rh(dσ*) metal-to-metal charge transfer (3MMCT) excited state. Utilizing a deuterated BL, the excited-state lifetimes and quantum yield of emission (Φem) are increased for Ru(II), Ru(II),Ru(II), Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes. The Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes have previously been shown to be exceptional photochemical molecular devices (PMD) for photoinitiated electron collection (PEC). The ability of these complexes to undergo multiple redox cycles, efficiently absorb light, populate reactive excited states, and collect electrons at a reactive Rh metal center fulfills the requirements for H2O reduction photocatalysts. Photolysis of the Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes with 470 nm light in the presence of a sacrificial electron donor and H2O substrate yields photocatalytic H2 production. Varying the BL from dpp to d10-dpp in the bimetallic architecture results in enhanced, although relatively low, catalyst efficiency producing 40 ± 10 μL H2 with dpp and 80 ± 10 μL H2 with d10-dpp in a CH3CN solvent system after 48 h photolysis. The trimetallic architecture showed no enhancement in photocatalytic efficiency and produced 210 ± 20 μL H2 with dpp and 180 ± 20 μL H2 with d10-dpp in a DMF solvent system after 20 h photolysis. The Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes' behavior differs in that the excited state lifetime is the most important factor for bimetallic catalyst functioning, but intramolecular electron transfer is the most important factor for the trimetallic photocatalysts. Another important property to understand with these catalysts is their long-term stability in solution. In order for these mixed-metal complexes to be industrially useful, they must perform for long periods of time without degradation in the presence of H2O substrate and electron donors in solution. Previous examinations of Ru(II),Rh(III),Ru(II) photocatalysts have found that they can perform for ca. 50 h of photolysis, but are not as effective as the initial few hours. Special care was taken to synthesize enantiopure LA subunits and incorporate them into Ru(II),Pt(II) and Ru(II),Rh(III),Ru(II) architectures to study their photolytic stability by monitoring how long the complexes retained their chirality using electronic circular dichroism (ECD) spectroscopy. After photolyzing for longer than 200 hours with an LED light source, the quantum yield for racemization (Φrac) for the Ru(II),Pt(II) and Ru(II),Rh(III),Ru(II) architectures is 2.6 ⨉ 10⁻⁸ and 0.72 ⨉ 10⁻⁸ respectively. Also, by photolyzing in the presence of free bpy, the bi- and trimetallic complexes racemize via a non-dissociative trigonal twist mechanism. This dissertation reports the detailed analysis of the electrochemical, spectroscopic, photophysical, and photochemical properties of a series of selectively deuterated [(TL)2Ru(BL)](PF6)2, [(TL)2Ru(BL)Ru(TL)2](PF6)4, [(TL)2Ru(BL)RhCl2(TL′)](PF6)3, and [{(TL)2Ru(BL)}2RhCl2](PF6)5 (TL = bpy or d8-bpy; BL = dpp or d10-dpp; bpy = 2,2′-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) supramolecular complexes and a series of [(bpy)2Ru(prolinate)](PF6), [(bpy)2Ru(dpp)](PF6)2, [(bpy)2Ru(dpp)PtCl2](PF6)2, and [{(bpy)2Ru(dpp)}2RhCl2](PF6)5 supramolecular complexes with enantiopure light absorbing subunits. The design of the supramolecular architecture and intrinsic properties of each subunit contribute to the function of these systems. The careful design, synthesis and purification, thorough characterizations, and experimentation have led to deeper understanding of the molecular properties required for efficient H2O reduction. / Ph. D.
103

[en] SYNTHESIS AND CHARACTERIZATION OF THE PHOTOCATALYSTS BASED ON MESOPOROUS MATERIALS FOR PHOTOCATALYTIC PRODUCTION OF H2 FROM WATER / [pt] SÍNTESE E CARACTERIZAÇÃO DE FOTOCATALISADORES BASEADOS EM MATERIAIS MESOPOROSOS PARA A PRODUÇÃO FOTOCATALÍTICA DE H2 A PARTIR DA ÁGUA

SABRINA GUIMARAES SANCHES 01 July 2014 (has links)
[pt] Neste trabalho foram sintetizados fotocatalisadores baseados em Ti e suportados nas sílicas mesoporosas HMS e SBA-15 preparados pelos métodos de deposição estrutural e impregnação ao ponto úmido. Os fotocatalisadores foram testados na reação de separação da água para a produção de hidrogênio usando radiação UV. Estudou-se também a influência da razão molar Si/Ti de 20 e 40, e o uso de diferentes fontes de titânio como: isopropóxido de titânio, oxalato de titânio, butóxido de titânio, incluindo o óxido de titânio comercial P25. Também foi estudado o uso da platina e do cério como cocatalisadores. Os suportes e os fotocatalisadores foram caracterizados pelas técnicas de ICP-OES, FRX, DRX, isotermas de adsorção e dessorção de N2, ATG, MET, MEV, DRS UV-Vis e espectroscopia de IV. Os resultados mostraram que a substituição parcial do Ti na rede da sílica mesoporosa modificou a estrutura sem destruir os canais cilíndricos dos suportes. Os fotocatalisadores preparados por deposição estrutural em HMS usando diferentes fontes de Ti apresentaram produções de H2 diferentes, seguindo a ordem isopropóxido maior do que oxalato maior do que butóxido, devido à formação de diferentes espécies de Ti isoladas tetraedricamente e octaedricamente coordenadas. Foi comprovado também que com o aumento do teor de Ti a atividade fotocatalítica diminui. A comparação entre os suportes mostraram que a produção de H2 para os fotocatalisadores baseados em HMS foram superiores aos preparados em SBA-15. Quanto aos métodos de preparo, a atividade fotocatalítica para as amostras preparadas por impregnação foi maior após 3 h de reação que nos fotocatalisadores preparados por deposição estrutural. O TiO2-P25 incorporado na HMS também criou espécies octaédricas isoladas possibilitando uma produção de H2 mais eficiente que o TiO2-P25 puro. / [en] Photocatalysts were synthesized based on Ti and supported on mesoporous silica SBA-15 and HMS. They were prepared by structural deposition and wet impregnation methods. The photocatalysts were tested in the reaction of water splitting to produce hydrogen using UV radiation. It was also studied the influence of the Si/Ti molar ratio of 20 and 40 and the use of different titanium sources: titanium isopropoxide, titanium oxalate, titanium butoxide and titanium oxide P25. Platinum and cerium were also studied as cocatalysts. The supports and photocatalysts were characterized by the techniques of ICP-OES, XRF, XRD, N2 adsorption–desorption isotherms, TGA, TEM, SEM, FT-IR and UV-Vis DRS. The results showed that when Ti was partly substituted into the silica framework the structure was modified without destroying the supports cylindrical channels. The photocatalysts prepared by structural deposition into HMS using different sources of Ti showed different production of H2, following the order: isopropoxide more than oxalate more than butoxide due to the formation of different isolated Ti species tetrahedrally and octahedrally coordinated. It was also demonstrated that increasing Ti content the photocatalytic activity decreases. The comparison between the supports showed that H2 production for photocatalysts based on HMS were superior to those prepared with SBA-15. Regarding methods of preparation, the photocatalytic activity for the samples prepared by impregnation method was higher after 3 h of reaction than photocatalysts prepared by deposition structure. The TiO2-P25 incorporated into HMS also create the octahedral isolated species enabling a H2 production more efficient than pure TiO2-P25.
104

Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting / Analyse d’interface et développement des hétérostructures de BiVO4 et CuFeO2 pour le craquage photochimique de l’eau

Hermans, Yannick 06 May 2019 (has links)
Le craquage photo(électro)chimique (PEC) de l’eau par l’énergie solaire est considéré comme une méthode prometteuse de production renouvelable d’hydrogène. Dans ce travail, des hétérostructures à base de BiVO4 et CuFeO2 ont été choisis pour effectuer la réaction d’oxydation et de réduction de l’eau, respectivement. Cependant, les avantages exacts des hétérostructures n’ayant pas encore été complètement élucidés. Ce travail a eu pour objectif d’examiner les propriétés de certaines hétérojonctions à base de BiVO4 et de CuFeO2 par des expériences d’interface. Dans ce but, un certain matériau a été pulvérisé sur un substrat de BiVO4ou de CuFeO2 et des mesures de spectroscopie de photoélectrons ont été effectuées à chaque étape du dépôt. Nous avons ainsi pu interpréter l’alignement des bandes entre le substrat et le matériau pulvérisé, et déterminer l’accordabilité du niveau de Fermi pour les absorbeurs étudiés.Par ailleurs, des hétérostructures à base de particules de CuFeO2 et de BiVO4 anisotropes ont été élaborées par photodéposition. Les performances de ces poudres dans des expériences de craquage photochimique de l’eau ont ensuite été déterminées. / Solar photo(electro)chemical (PEC) water splitting is regarded as a promising ways of renewable hydrogen production. In this work, heterostructures based on BiVO4 and CuFeO2were chosen to perform the water oxidation and water reduction reaction, respectively. However, the exact benefits of the contact materials in these heterostructures have not yet been completelyelucidated. Hence, we opted in this work to investigate the junction properties of certainBiVO4 and CuFeO2 based heterostructures through so called interface experiments, where by a certain contact material was step wise sputtered on to a BiVO4 or CuFeO2 substrate, performing photoelectron spectroscopy measurements in between each deposition step. In this way we could interpret the band alignment between the substrate and the contact material, as well as determine the Fermi level tunability for the studied photoabsorbers. In parallel, new anisotropic CuFeO2and BiVO4 based heterostructured powders were created through photodeposition. These powders were tested as well for their performance in photochemical water splitting.
105

Electronic and photocatalytic properties of transition metal decorated molybdenum disulfide

Shi, X. (Xinying) 30 August 2018 (has links)
Abstract This thesis is dedicated to realizations and physical understanding of electronic and photocatalytic properties after decorating transition metals to the semiconducting molybdenum disulfide. Synthesized via facile wet chemical methods, the MoS₂-Au, MoS₂-Au-Ni and MoS₂-Ag-Ni composites were formed as binary or ternary compounds. The Au nanoparticles are stably joined to the MoS₂ matrix without deteriorating layered structures of the host. After introducing the Au nanoglue as a common buffer, a metallic contact is reached between Ni and MoS₂, and attributed to new electron migration channel via MoS₂ edge contact. Adapting the Ag as the buffer element can attach the Ni to the basal plane of the MoS₂ beside edge contact. The Ni-Ag-MoS₂ composite effectively splits water under visible light irradiation and produce hydrogen. The excellent photocatalytic activity is attributed to effective charge migration through dangling bonds at the MoS2-Ag-Ni alloy interface and the activation of MoS₂ basal planes. / Original papers The original publications are not included in the electronic version of the dissertation. W. Cao, V. Pankratov, M. Huttula, X. Shi, S. Saukko, Z. Huang, M. Zhang. Gold nanoparticles on MoS2 layered crystal flakes. Materials Chemistry and Physics, 158, 89−95 (2015). DOI: 10.1016/j.matchemphys.2015.03.041 X. Shi, S. Posysaev, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, T. Li, O. Miroshnichenko, M. Zhang, X. Wang, Z. Huang, S. Saukko, D. L. González, S. van Dijken, M. Alatalo, W. Cao. Metallic contact between MoS₂ and Ni via Au nanoglue. Small, 14, 1704526 (2018). DOI: 10.1002/smll.201704526 http://jultika.oulu.fi/Record/nbnfi-fe2018060525279 X. Shi, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, Z. Huang, G. Wang, S. Posysaev, O. Miroshnichenko, M. Alatalo, W. Cao. Quantification of bonded Ni atoms for Ni-MoS₂ metallic contact through X-ray photoemission electron microscopy. Microscopy and Microanalysis, 24, 458−459 (2018). DOI: 10.1017/S1431927618014526 http://jultika.oulu.fi/Record/nbnfi-fe2018082834233 X. Shi, M. Zhang, W. Cao, X. Wang, M. Huttula. Efficient photocatalytic hydrogen evolution via activated multilayer MoS₂. Manuscript. X. Shi, Z. Huang, M. Huttula, T. Li, S. Li, X. Wang, Y. Luo, M. Zhang, W. Cao. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: a brief review from first-principles aspects. Crystals, 8, 24 (2018). DOI: 10.3390/cryst8010024 http://jultika.oulu.fi/Record/nbnfi-fe201802153441
106

Catalysts based on transition metals for applications in energy conversion / Catalisadores baseados em metais de transição para aplicações em processos de conversão de energia

Araújo, Thaylan Pinheiro 12 February 2019 (has links)
Energy conversion processes such as the water splitting and CO2 hydrogenation reactions have emerged as attractive approaches to mitigate environmental concerns on CO2 emissions as well as to provide an alternative source of renewable fuels. These strategic processes can capitalize on the energy of renewable resources (e.g solar and wind) to drive chemical reactions to generate, in a green and sustainable way, fuels and value-added chemicals. Economically feaseable heterogeneous catalysts play a central role in advancing such processes for globally-relevant production scales. Hence, in this work, we focused on the synthetic development of several catalyst systems based on cost-effective earth-abudant 3d transition metals such as nickel (Ni), cobalt (Co), iron (Fe) and zinc (Zn). Specifically, we turned our attention to produce a series of catalysts comprised of: i) NiFe oxyhydroxide supported on carbon for application in oxygen evolution reaction (OER), a bottleneck reaction for the water splitting process, and ii) Ni and Co nanoparticles supported on Zinc oxide (ZnO) for the CO2 hydrogenation reaction. Regarding the NiFe oxyhydroxide systems, we evaluated the catalytic performance of these materials towards the OER and benchmarked those with that of state-of-the-art OER electrocatalyts such as Ir/C. In addition to that, we also focused on rationalizing the key reasons for the significant enhancements in OER activity of such catalysts in terms of their surface and bulk compositions. For Co/ZnO and Ni/ZnO catalysts, aside from assessing their catalytic activity and selectivity behavior, we performed a systematic investigation of the catalytically important properties of such catalyst interfaces under typical CO2 hydrogenation reaction conditions using in situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). This allowed us to acquire important knowledge into the origin and the nature of the active sites associated with the catalytic activity and selectivity in these materials. / Processos de conversão de energia, como as reações de quebra de água e hidrogenação de CO2, têm surgirdo como abordagens atraentes para mitigar as preocupações ambientais das emissões de CO2, bem como para fornecer uma fonte alternativa de combustíveis renováveis. Esses processos estratégicos podem capitalizar a energia de recursos renováveis (por exemplo, solar e eólica) para realizar reações químicas que geram, de forma sustentável e ecológica, combustíveis e produtos químicos com valor agregado. Catalisadores heterogêneos economicamente viáveis desempenham um papel central no avanço de tais processos para escalas de produção globalmente relevantes. Assim, neste trabalho, nos concentramos no desenvolvimento sintético de vários sistemas catalisadores baseados em metais de transição 3d abudantes como o níquel (Ni), cobalto (Co), ferro (Fe) e zinco (Zn). Especificamente, voltamos nossa atenção para produzir uma série de catalisadores compostos de: i) oxi-hidróxido de NiFe suportado em carbono para aplicação na reação de evolução de oxigênio (OER), uma reação limitante para o processo de quebra de água, e ii) nanopartículas de Ni e Co suportadas em Óxido de zinco (ZnO) para a reação de hidrogenação do CO2. Com relação aos sistemas de oxi-hidróxido de NiFe, avaliamos o desempenho catalítico desses materiais frente a OER e comparamos estes com eletrocatalisadores para OER de última geração, como Ir/C. Além disso, também nos concentramos em racionalizar as principais razões para as melhorias significativas na atividade catalítica de tais catalisadores em termos de suas composições de superfície e volume. Para os catalisadores de Co/ZnO e Ni/ZnO, além de avaliar sua atividade catalítica e seletividade, realizamos uma investigação sistemática in situ das propriedades cataliticamente importantes de tais interfaces usando a Espectroscopia de Fotoelétrons de Raios X a Pressão Ambiente. (APXPS) sob condições típicas de reação de hidrogenação de CO2. Isso nos permitiu adquirir conhecimentos importantes sobre a origem e a natureza dos sítios ativos associados à atividade e seletividade catalítica nesses materiais.
107

Étude de l'échange d'ions modulé électriquement : application du couplage échange d'ions-électrodialyse à la séparation de biomolécules / Study of electrical swing ion exchange : application of coupling of ion exchange-electrodialysis to biomolecules separation

Lu, Wei 21 June 2010 (has links)
Le présent travail vise à étudier le couplage de l’échange d’ions et de l’électrodialyse. Cette étude est appliquée à la séparation de biomolécules. Un des objectifs est de diminuer la génération d’effluents salins produits par les étapes d’échange d’ions utilisées de façon classique dans les bioséparations. Une première approche a conduit à la conception d’une architecture avec un mode de fonctionnement cyclique en 3 étapes qui permet de purifier certaines familles de peptides sans utiliser de tampon de pH ni générer d’effluents. Le dispositif expérimental est constitué d’une cellule d’électrodialyse dans laquelle sont introduites des résines échangeuses d’anions. Les trois étapes sont les suivantes : fixation des biomolécules sur la résine initialement sous forme carbonate, élution par une solution de dioxyde de carbone dissous dans l’eau, électrorégénération de la résine sous sa forme initiale, conduisant simultanément à la régénération de la solution d’acide carbonique. L’étape d’électrorégénération a été modélisée et les simulations permettent d’améliorer la compréhension des processus couplés mis en jeu comme les équilibres d’échange d’ions, les équilibres en solution, l’électromigration. Une deuxième approche a ensuite consisté à étudier les possibilités de contrôle du pH par voie électrochimique, afin de limiter l’utilisation de solutions tampons. La dissociation de l’eau, conduisant à la formation de protons et d’ions hydroxyles, a été plus particulièrement étudiée en mettant à profit les propriétés des contacts dits « bipolaires » sous l’effet d’un champ électrique. Il s’est alors avéré que les choix du type de résine et de la densité de courant permettent de jouer sur le pH Toutefois ce travail doit être poursuivi par la recherche d’architectures et de modes opératoires qui permettent d’obtenir un pouvoir tampon adéquat / The present work aims to study the coupling of ion exchange and electrodialysis. This study is applied to the separation of biomolecules. One objective is to reduce the generation of saline wastewater produced by the ion exchange steps used conventionally in bioseparations. One approach has led to the design of architecture with a cyclic mode in 3 steps to purify some families of peptides without using a buffer pH or generate wastes. The experimental device consists of an electrodialysis cell in which are introduced anion exchange resins. The three steps are: loading of biomolecules on the resin initially in the carbonate form, elution with a solution of carbon dioxide dissolved in water, electroregeneration of the resin in its original form leading simultaneously to the regeneration of the carbonic acid solution. Using a modelling of the electroregeneration step, simulations can improve the understanding of coupled processes as the ion exchange equilibria, the equilibria in solution, the electromigration. A second approach has then been to study the possibilities of controlling the pH by electrochemical means to limit the use of buffers. The dissociation of water, leading to the formation of protons and hydroxyl ions, has been particularly studied by accounting the properties of contacts called « bipolar » as a result of an electric field. It was established that the choice of resin type and the current density can modify the pH. However this work must be pursued through research of architectures and operating procedures that deliver appropriate buffer capacity
108

Ανάπτυξη ολοκληρωμένης διεργασίας για τη φωτοκαταλυτική διάσπαση του νερού προς παραγωγή υδρογόνου με χρήση ηλιακής ακτινοβολίας

Δασκαλάκη, Βασιλεία 07 July 2010 (has links)
Στην παρούσα διδακτορική διατριβή μελετάται η φωτοκαταλυτική διάσπαση του νερού προς παραγωγή υδρογόνου με χρήση πηγής που προσομοιώνει την ηλιακή ακτινοβολία. Για το σκοπό αυτό χρησιμοποιήθηκαν φωτοκαταλύτες είτε θειούχου καδμίου (CdS) σε συνδυασμό με θειούχα και θειώδη άλατα του νατρίου (Na2S-Na2SO3) είτε διοξειδίου του τιτανίου (TiO2) σε συνδυασμό με γλυκερόλη (C3O5(OH)3). Χρησιμοποιώντας φωτοκαταλύτη θειούχου καδμίου (CdS) εξετάστηκε η δυνατότητα παρασκευής σταθερών καταλυτών με i) διαφορετικό διαλύτη, ii) διαφορετικές πρόδρομες ενώσεις, και iii) με σύζευξη του CdS με ημιαγωγούς μεγαλύτερου ενεργειακού χάσματος, το θειούχο ψευδάργυρο (ZnS) ή/και το διοξείδιο του τιτανίου (TiO2), σε διάφορες αναλογίες σύνθεσης. Παρατηρήθηκε ότι η απόδοση του παραγόμενου καταλύτη εξαρτάται από τη μέθοδο παρασκευής του, και βελτιώνεται σημαντικά όταν το CdS συζευχθεί με το ZnS σε αναλογία CdS/ZnS (25-75). Επιπλέον αύξηση του ρυθμού παραγωγής υδρογόνου ελήφθη εναποθέτοντας 0.5% κ.β. Pt στην επιφάνεια του σύνθετου φωτοκαταλύτη CdS/ZnS (25-75). Η σύνθεση του CdS με TiO2 ή με TiO2 και ZnS και ταυτόχρονη εναπόθεση 0.5% κ.β., πλατίνας (0.5% Pt-CdS/TiO2, 0.5% Pt-CdS/ZnS/TiO2), οδηγεί και πάλι σε αύξηση του ρυθμού παραγωγής υδρογόνου χωρίς όμως να παρατηρείται σημαντική διαφοροποίηση σε σχέση με το ρυθμό που ελήφθη με φωτοκαταλύτη 0.5% Pt-CdS/ZnS (25-75). Αντικατάσταση των συμβατικών θυσιαζόμενων ενώσεων (Na2S και Na2SO3) με αιθανόλη (1% κ.ο.), οδήγησε σε μηδενικό καταλυτικό ρυθμό στην περίπτωση των φωτοκαταλυτών 0.5%Pt-CdS/ZnS (25-70) και 0.5%Pt-CdS, ενώ στην περίπτωση των 0.5%Pt CdS/TiO2 (50-50) και 0.5%Pt CdS/ZnS/TiO2 ((25-75):1) ο ρυθμός μειώθηκε σημαντικά. Ταυτόχρονη χρήση θυσιαζόμενων ενώσεων (Na2SO3-Na2S και αιθανόλης) μόνο στην περίπτωση του 0.5% Pt-CdS/ZnS/TiO2 ((25-75):1) οδηγεί σε διαδοχική δράση των δύο θυσιαζόμενων ενώσεων Χρησιμοποιώντας φωτοκαταλύτη διοξειδίου του τιτανίου ενισχυμένο με 0.5% κ.β. πλατίνα (0.5%Pt-TiO2) σε υδατικό αιώρημα παρουσία γλυκερόλης (C3O5(OH)3), πραγματοποιήθηκε συνδυασμός της φωτοκαταλυτικής διάσπασης του νερού και της φωτο-επαγόμενης οξείδωσης της οργανικής ένωσης υπό αναερόβιες συνθήκες. Με τον τρόπο αυτόν, το νερό ανάγεται για την παραγωγή Η2 ενώ η οργανική ένωση, που ενεργεί ως δότης ηλεκτρονίων, οξειδώνεται προς το CO2. Η παρουσία της γλυκερόλης στο διάλυμα οδηγεί παράλληλα σε σημαντική αύξηση του ρυθμού παραγωγής Η2, λόγω της επιπρόσθετης παραγωγής υδρογόνου (additional hydrogen, H2,add.), η οποία προέρχεται από τη διάσπαση της οργανικής ένωσης. Τα συνολικά παραγόμενα ποσά των H2,add. και CO2 έχουν αναλογία μορίων H2,add.:CO2 πρακτικά ίση με 7:3, η οποία αντιστοιχεί στην αντίδραση αναμόρφωσης της γλυκερόλης (C3H8O3 + 3H2O  3CO2 + 7H2). Τα αποτελέσματα που ελήφθησαν από σειρά πειραμάτων που πραγματοποιήθηκαν μεταβάλλοντας τις λειτουργικές παραμέτρους της αντίδρασης αναμόρφωσης της γλυκερόλης, έδειξαν ότι ο ρυθμός παραγωγής υδρογόνου εξαρτάται, κυρίως, από τη συγκέντρωση της γλυκερόλης και, σε μικρότερο βαθμό, από το είδος και τη φόρτιση του μετάλλου, το pH, τη θερμοκρασία του διαλύματος και τη συγκέντρωση του καταλύτη στο αιώρημα. Πιο συγκεκριμένα, η μελέτη της επίδρασης της φύσης του μετάλλου (0,5%κ.β., Pt, Pd, Ru, Rh, Ag), έδειξε ότι ο μέγιστος ρυθμός παραγωγής υδρογόνου λαμβάνεται με χρήση Pt, καθώς η σειρά ενεργότητας των μετάλλων μεταβάλλεται ως εξής, Pt>Pd>Ru>Rh>Ag. Η επίδραση της φόρτισης σε μέταλλο (Pt) στο ρυθμό παραγωγής υδρογόνου, σε ένα εύρος τιμών από 0,05 έως 5% κ.β Pt, έδειξε ότι ο μέγιστος ρυθμός παραγωγής υδρογόνου αυξάνει με αύξηση της φόρτισης σε μέταλλο στην περιοχή 0,05-0,5% κ.β Pt, ενώ για φορτίσεις μεγαλύτερες του 2% κ.β Pt σημειώνεται μείωση του ρυθμού. Η αύξηση της συγκέντρωσης του καταλύτη (0,5%Pt/TiO2) στο αιώρημα από 0,6 g/L έως 2,66 g/L οδηγεί σε σταδιακή αύξηση και τελικά σταθεροποίηση του μέγιστου ρυθμού παραγωγής υδρογόνου. Ο ρυθμός της αντίδρασης αυξάνει σε βασικά διαλύματα, σε σχέση με το ρυθμό που μετρήθηκε σε φυσικό pH, και μειώνεται σε όξινα διαλύματα. Επιπλέον, αύξηση του ρυθμού επιτυγχάνεται με αύξηση της θερμοκρασίας από τους 40oC στους 60oC, ενώ περαιτέρω αύξηση της θερμοκρασίας στους 80oC δεν οδηγεί σε σημαντική μεταβολή του ρυθμού. Η σημαντικότερη παράμετρος που επηρεάζει το ρυθμό παραγωγής υδρογόνου είναι η συγκέντρωση της γλυκερόλης στο αιώρημα. Αύξηση της αρχικής συγκέντρωσης της γλυκερόλης στο αιώρημα από 10-4 έως 100 mol L-1 οδηγεί σε αύξηση του μέγιστου ρυθμού παραγωγής υδρογόνου, το οποίο αυξάνεται μονοτονικά με το λογάριθμο της συγκέντρωσης της γλυκερόλης έως και δύο τάξεις μεγέθους. Αντίστοιχα πειράματα επίδρασης της συγκέντρωσης της γλυκερόλης και της μάζας του φωτοκαταλύτη στο αιώρημα, όπως και της % φόρτισης της πλατίνας στην επιφάνεια του 0,5%Pt/TiO2, πραγματοποιήθηκαν σε ξεχωριστό αντιδραστήρα. Ο αντιδραστήρας αυτός περιέχει εσωτερικά λαμπτήρα ισχύος 4W, ο οποίος προσομοιώνει την υπεριώδη ακτινοβολία και εκπέμπει φωτόνια στα 365nm. Σε κάθε περίπτωση, τα αποτελέσματα είναι ποιοτικά όμοια με αυτά που ελήφθησαν με ορατή ακτινοβολία. Αξίζει να σημειωθεί ότι με χρήση υπεριώδους ακτινοβολίας λαμβάνονται μεγαλύτεροι καταλυτικοί ρυθμοί σε σχέση με αυτούς που ελήφθησαν με ορατή ακτινοβολία. Τα αποτελέσματα πειραμάτων που πραγματοποιήθηκαν για τον προσδιορισμό των ενδιάμεσων και τελικών προϊόντων (αέριων ή/και υγρών) της αντίδραση αναμόρφωσης της γλυκερόλης υδατικού αιωρήματος συγκέντρωσης 17 mM, έδειξαν ότι κύριο ενδιάμεσο προϊόν της αντίδρασης είναι η μεθανόλη, ενώ ταυτόχρονα ανιχνεύθηκαν σημαντικά μικρότερες ποσότητες οξικού οξέος. Ως τελικά προϊόντα ανιχνεύθηκαν μόνο Η2 και CO2, τα οποία ποσοτικά βρίσκονται σε πλήρη συμφωνία με αυτά που αναμένονται από τη στοιχειομετρία της αντίδρασης. Μελέτη πραγματοποιήθηκε για τη διερεύνηση της μη στοιχειομετρικής έκλυσης οξυγόνου απουσία και παρουσία γλυκερόλης συγκέντρωσης 0.0-1.36 mM. Τα αποτελέσματα οδηγούν στο συμπέρασμα ότι το φωτοπαραγόμενο οξυγόνο είτε παραμένει δεσμευμένο στην επιφάνεια του φωτοκαταλύτη με τη μορφή περοξοτιτανικών συμπλόκων ή οξειδίων του τιτανίου, είτε απελευθερώνεται στο διάλυμα με τη μορφή Η2Ο2. Σε όλες τις περιπτώσεις η ποσότητα των υπεροξειδικών ειδών στην επιφάνεια του φωτοκαταλύτη τείνει προς μια οριακή τιμή (~20 μmol), η οποία πιθανότατα αντιστοιχεί στη μέγιστη δυνατή κάλυψη του TiO2 με υπεροξειδικά είδη. Ποιοτικά όμοια αποτελέσματα ελήφθησαν και από αντίστοιχα πειράματα που έγιναν με χρήση γλυκόζης συγκέντρωσης 0.0-0.417mM. Η κβαντική απόδοση (quantum yield) των φωτο-επαγόμενων αντιδράσεων αναμόρφωσης μετρήθηκε σε ξεχωριστό φωτοαντιδραστηρα με χρήση λαμπτήρα “black light” που εκπέμπει στα 365 nm. Διαπιστώθηκε ότι κβαντική απόδοση από 1,8% που ελήφθη για το καθαρό νερό, αυξάνεται σε 70%, με αιώρημα γλυκερόλης συγκέντρωσης 1Μ. Τα αποτελέσματα της παρούσας διδακτορικής διατριβής μπορούν να χρησιμοποιηθούν για την αποικοδόμηση ρύπων σε θερμοκρασία δωματίου και ατμοσφαιρική πίεση, με ταυτόχρονη παραγωγή υδρογόνου έχοντας υψηλή απόδοση. / In the present study a detailed investigation has been carried out in an attempt to obtain photocatalytic hydrogen production with simulated the solar irradiation. The employed photocatalysts were either cadmium sulfide (CdS) in the presence of sodium sulfide and sulfide salts (Na2S-Na2SO3) or titanium dioxide (TiO2) in the presence of glycerol (C3O5(OH)3). Using cadmium sulfide (CdS) as phototcatalyst, the possibility of producing stabilized photocatalysts was investigated with i) various solvents, ii) various precursors and iii) combined with wide band gap photocatalysts, like zinc sulphide (ZnS) or/and titanium dioxide (TiO2), with different ratio. Results revealed that CdS preparation process significantly influences the photocatalytic effectiveness and increase the hydrogen production. Increase in hydrogen production can be achieved by coupling CdS with ZnS in a ratio of CdS/ZnS (25-75). A further increase in the rate of hydrogen production was observed by dispersion of Pt (0.5 wt %) in the surface of the compined photocatalyst, CdS/ZnS (25-75). Additionally, as experimental results indicated, increase in hydrogen production can be achieved by coupling CdS with TiO2 (0.5% Pt-CdS/TiO2) or alternatively by mixing CdS with TiO2 and ZnS (0.5% Pt-CdS/ZnS/TiO2). In both cases, the obtained rates of hydrogen production were not much different with that obtained with the use of 0.5% Pt-CdS/ZnS (25-75). Replacing the conventional sacrificial agents (Na2S-Na2SO3) with ethanol (1% v/v), the rates of hydrogen production became zero, in the case of photocatalysts 0.5%Pt-CdS/ZnS (25-70) and 0.5%Pt-CdS or significantly decreased, in the case of photocatalysts 0.5%Pt CdS/TiO2 (50-50) and 0.5%Pt CdS/ZnS/TiO2 ((25-75):1). Simultaneous use of sacrificial agents with 1% v/v ethanol (Na2SO3-Na2S and 1% ethanol), results in successive action of the two sacrificial agents, only for the case of 0.5%Pt CdS/ZnS/TiO2 ((25-75):1). Using titanium dioxide (TiO2), as phototcatalyst in the presence of glycerol (C3O5(OH)3), resulted both in photocatalytic splitting of water and light-induced oxidation of organic substrates into a single process, that takes place at ambient conditions in the absence of gas-phase oxygen. According to the proposed mechanism, the water is reduced to hydrogen, while the organic compound acts as electron donor and gradually oxidized towards to carbon dioxide (CO2). Irradiation of aqueous glycerol, results in notably strong evolution of H2, because of the additional production of hydrogen (additional hydrogen, H2, add.), which comes from the splitting of glycerol. The total amounts of H2,add. and CO2 are practically equal to the molar ratio H2,add..:CO2 7:3, which corresponds in the reaction of reforming (C3H8O3 + 3H2O  3CO2 + 7H2). The results of experiments were conducted in order to investigate the effects of operating parameters on the rate of hydrogen production, showed that the rate of hydrogen production depends strongly on glycerol concentration and, to a lesser extent, on the kind of metal loading, on solution pH and temperature and the concentration of photocatalyst in solution. Specifically, experiments of the effectiveness of the nature of the dispersed metal on catalytic performance showed that the maximum rate of hydrogen production is obtained with the use of Pt, as efficiency of the metal doped TiO2 is in the order of Pt > Pd > Ru >Rh >Ag. The effect of metal loading (Pt) on the reaction rate has been investigated in the range of 0.0-5.0 wt.%, and showed that the maximum rate of hydrogen production increased with increasing Pt loading from 0.05 to 0.5 wt% but decreased for load greater than 2% wt. Pt. Increase the catalyst concentration (0,5%Pt/TiO2) in the solution in the range of 0,6 g/L until 2,66 g/L leads to progressive increase on the reaction rate, which is finally stabilized on the biggest rate of hydrogen production. The rate of hydrogen evolution is higher at neutral or basic solutions, compared to acidic solutions and increased with increasing temperature from 40oC to 60-80oC (Fig. 3). Further increase of solution temperature up to 80oC did not induce significant changes on the rate. The most important parameter, which mainly determines the rate of hydrogen production, is glycerol concentration (C) in solution. In particular, increasing the glycerol concentration (C) in solution, in the range of 10-4 until 100 mol L-1, results in a linear increase of the maximum rate of hydrogen production with logCglyc. The maximum rate increased about two orders of magnitude with increase of Cglyc from zero to 1M. Corresponding experiments of effect of glycerol, photocatalyst concentration in the suspension and % Pt loading in the surface of 0.5%Pt/TiO2 were conducted in separate reactor. The photo-reactor includes the lamp, which simulates UV irradiation emitting at 365 nm. In all cases, the results were qualitatively similar with those obtained with the use of UV-Vis irradiation. The only difference was that with UV irradiation bigger rates of hydrogen production are obtained. Experiments designed with the purpose to define the formation of reaction’s intermediates and final products (gas or/and liquid), in glycerol solution concentration 17 mM, indicated that methanol is the main reaction intermediate, small amounts of acetic was also detected in the liquid phase. The final products were only H2 and CO2, which are in great agreement with those predicted from the stoichiometry of the reforming reaction. The investigation of slurries for the non-stoichiometric oxygen production, in the presence or in the absent of glycerol (concentration 0.0-1.36 mM), indicated that photogenerated oxygen is bound at the catalyst surface as peroxotitanate complexes or titanoxide, or is released in the solution as Η2Ο2. In all cases, the quantity of peroxide species at the catalyst’s surface tends to a marginal value (~20 μmol), which corresponds to the possibility of maximum cover of TiO2. Qualitatively similar results were obtained with the use of glucose slurries in concentration 0.0-0.417mM. The quantum yield (QY) of hydrogen evolution was measured in the photoreactor with the UV lamp emitting at 365 nm. It is observed that quantum yield increased from 1.8%, for pure water to 70%, for glycerol solution concentration 1M. The results of my thesis can be used for waste degradation in ambient conditions with simultaneous production of hydrogen and high efficiency.
109

Élaboration de nanostructures d’oxydes métalliques par post-décharge micro-ondes pour la photolyse de l’eau / Elaboration of metallic oxide nanostructures by microwave plasma afterglow for water splitting

Imam, Abdallah 15 December 2017 (has links)
Durant cette thèse, des couches minces de fer, de fer-cuivre et de cuivre-zinc déposées par pulvérisation magnétron ont été oxydées par des post-décharges plasma pour synthétiser des nanostructures d’oxydes métalliques. L’oxydation par post-décharge permet un abaissement de la température par rapport à l’oxydation thermique dans la mesure où l’oxygène moléculaire est excité ou dissocié, ce qui fournit des espèces plus réactives comme l’oxygène singulet ou l’oxygène atomique. Cette oxydation à température modérée favorise une croissance anisotrope des cristaux. L’oxydation de couches minces de Fe-Cu a conduit à la croissance de nanolamelles de Fe2O3 et de nanoparois, nanotours et nanofils de CuO. La distribution surfacique de ces nanostructures dépend de la température d’oxydation, de la concentration des espèces réactives et de la composition initiale de la couche mince. L’oxydation de couches minces de Cu-Zn a conduit à la croissance de nanofils ultra-minces de ZnO dans lesquels un confinement quantique peut se produire. Les nanostructures obtenues ont été caractérisées par différentes techniques (microscopies électroniques, diffraction des rayons X et spectrométrie de masse des ions secondaires). Les mécanismes de croissance de ces nanostructures sont basés sur le rôle des contraintes, de la température, de la concentration des espèces réactives ainsi que sur l’influence de la taille des grains sous-jacents. Les nanostructures d’oxydes métalliques obtenues serviront comme photocatalyseurs pour produire de l’hydrogène par photolyse de l’eau. Par ailleurs, les nanofils ultra-minces de ZnO serviront de photocatalyseurs pour la purification de l’eau / In this manuscript, metallic oxide nanostructures were synthesized by the oxidation of iron, iron-copper and copper-zinc thin films by means of a plasma afterglow. Thin films were deposited by magnetron sputtering. The use of plasma afterglows allows a lowering of the temperature compared with the thermal oxidation conditions, given that molecular oxygen is excited or dissociated, which provides more reactive species such as singlet oxygen or atomic oxygen. This oxidation at moderate temperature promotes anisotropic crystal growth. The oxidation of iron–copper thin films leads to the synthesis of Fe2O3 nanoblades and CuO nanowalls, nanotowers and nanowires. The surface distribution of these nanostructures depends on the oxidation temperature, the concentration of the reactive species and the initial composition of the thin layers. The oxidation of copper-zinc thin films leads to the synthesis of ultra-thin ZnO nanowires in which quantum confinement could occur. As-grown nanostructures were characterized by various techniques (electron microscopy, X-ray diffraction and secondary ion mass spectrometry). The growth mechanisms described for these nanostructures relies on the role of stress, temperature, reactive species concentration and on the effect of underlying grain size. As-synthesized nanostructures will serve as photocatalysts to produce hydrogen by water splitting. In addition, ultra-thin ZnO nanowires will also serve as photocatalysts for water purification
110

Development of nanostructured materials based on manganese oxides and produced by an electrochemical method for water electrolysis / Développement de matériaux nanostructurés à base d’oxydes de manganèse et produits par une méthode électrochimique pour l’électrolyse de l’eau

Yu, Wenchao 17 October 2016 (has links)
Le mécanisme élémentaire de l'électrodépôt de films de MnO2 fût étudié sur des électrodes de Pt massif dans des électrolytes aqueux. Il se révèle être une réaction multi-étapes sensible au pH et à la force ionique. La chronoampérométrie couplée à des électrolytes neutres peu concentrés favorise l'électrodépôt de films stables de MnO2. Le FTO est un meilleur substrat que l'ITO parce qu'il présente une activité électrochimique plus élevée et favorise la stabilité mécanique de films électrodéposés de MnO2. De plus, le potentiel d'électrodépôt influence à la fois la structure et la morphologie des films de MnO2. Les films amorphes de MnO2 obtenus à potentiel élevé possèdent une activité électrocatalytique et une stabilité plus élevées que la birnessite. Un traitement thermique peut améliorer amplement leur activité électrocatalytique et leur stabilité mécanique. Une transition de phase des films de MnO2 apparaît à 500 °C. Leur morphologie change de façon dramatique après chauffage au-delà de cette température. Les échantillons chauffés à 500 °C ont la meilleure activité électrocatalytique pour l'OER. Les cations Na+, K+, Ca2+ and Mg2+ sont insérés en petites quantités dans la structure des films de MnO2 au cours de la démarche d'électrodépôt, mais ils influencent néanmoins la structure et la morphologie des films. Finalement, les films de birnessite ou amorphes apparaissent comme des candidats prometteurs en tant que catalyseurs pour la dissociation photoélectrochimique de la dissociation de l'eau, puisqu'ils génèrent des photocourants considérables sous lumière solaire. Pour cela, des films de MnO2 épais, amorphes et recuits à 500 °C produisent les meilleures performances. / The basic electrodeposition mechanism of MnO2 films was studied first on bulk Pt electrodes in various aqueous electrolytes. It was revealed that MnO2 electrodeposition is a multi-step reaction that is sensitive to pH and ionic strength. Chronoamperometry coupled to low concentration neutral aqueous solutions favors the electrodeposition of stable MnO2 films. FTO was found to be a better substrate than ITO, because it has a higher electrochemical activity and could enhance the mechanical stability of electrodeposited MnO2 films. Moreover, the potential used for electrodeposition has great influence on both the structure and the morphology of MnO2 films. Amorphous MnO2 films obtained at high potential possess higher electrocatalytic activity and stability than the birnessite-type MnO2 variety. The heat treatment can greatly enhance the electrocatalytic activity and mechanical stability. A phase transition of MnO2 films appears at 500 °C. The morphology changes dramatically after heating above this temperature. Samples heated at 500 °C are found to have the best electrocatalytic activity towards OER. Na+, K+, Ca2+ and Mg2+ cations were found to be inserted in small amounts into the structure of MnO2 films during the electrodeposition procedure but they influence the structure and morphology of the films. Finally, birnessite type and amorphous MnO2 films appear to be promising candidates as catalysts for photoelectrochemical water splitting, as they are able to generate considerable photocurrents under solar light illumination. In this purpose, thick and amorphous films with 500 °C heat treatment are supposed to produce the best performances.

Page generated in 0.1108 seconds