• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 7
  • 6
  • 5
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 78
  • 36
  • 23
  • 21
  • 20
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Propriedades de catalisadores oriundos de Perovskitas baseadas em ferro e cobalto

Santos, Hilma Conceição Fonseca January 2011 (has links)
86 f. / Submitted by Ana Hilda Fonseca (anahilda@ufba.br) on 2013-04-11T16:26:04Z No. of bitstreams: 1 HilmaFonseca_dissertação_ 2011.pdf: 2091220 bytes, checksum: ab1c531b8b0822721d83a6c9c22c4001 (MD5) / Approved for entry into archive by Ana Hilda Fonseca(anahilda@ufba.br) on 2013-05-10T16:56:08Z (GMT) No. of bitstreams: 1 HilmaFonseca_dissertação_ 2011.pdf: 2091220 bytes, checksum: ab1c531b8b0822721d83a6c9c22c4001 (MD5) / Made available in DSpace on 2013-05-10T16:56:08Z (GMT). No. of bitstreams: 1 HilmaFonseca_dissertação_ 2011.pdf: 2091220 bytes, checksum: ab1c531b8b0822721d83a6c9c22c4001 (MD5) Previous issue date: 2011 / CNPq / A reação de deslocamento de monóxido de carbono com vapor d‟água (water gas shift reaction, WGSR) é um processo industrial amplamente utilizado, sendo uma etapa fundamental para a produção comercial de hidrogênio de alta pureza. A reação também é importante para a remoção de monóxido de carbono, a partir de vapores ricos em hidrogênio, uma vez que ele envenena a maioria dos catalisadores metálicos. O catalisador clássico da WGSR, conduzida na faixa de 350-420 °C, é a hematita dopada com oxido de cromo, que é toxico e perde área superficial específica, durante os processos industriais. Portanto, um esforço considerável tem sido feito nos últimos anos, a fim de obter catalisadores alternativos para a reação. Os catalisadores do tipo perovskita têm atraído muita atenção nos últimos tempos devido à alta flexibilidade da sua estrutura, às suas propriedades redox e à possibilidade de controlar as propriedades ácido-base. Desta forma foram estudados, neste trabalho, óxidos tipo perovskitas LaFe1-xCoxO3 (0 ≥ x ≤ 1), que foram empregados como precursores de catalisadores alternativos da WGSR. As amostras foram preparadas por decomposição térmica dos precursores, obtidos pelo método do citrato amorfo, seguida de calcinação a 600 ° C, por 4 h. As amostras foram caracterizadas por espectroscopia no infravermelho com transformada de Fourier, difração de raios X, fluorescência de raios X, medidas de área de superfície específica, redução à temperatura programada, espectroscopia de refletância difusa no ultravioleta e visível e microscopia eletrônica de varredura. Os catalisadores foram avaliados em WGSR, conduzida a 1 atm e distintas temperaturas, na faixa de 250 a 600 °C. Antes da reação, as amostras foram reduzidos sob fluxo de hidrogênio a 600 °C, por 1 h. Todas as amostras exibiram uma única fase de perovskita. A amostra isenta de ferro mostrou uma baixa área superficial específica (3,5 m2g-1), que aumentou com a introdução de ferro, sendo alcançados valores na faixa de 12 a 17 m2.g-1. A redução da perovskita LaCoO3 ocorreu em duas etapas, a primeira em torno de 300 °C, atribuída à redução da espécies Co3+ para Co2+ e a segundo em cerca de 500 °C, relacionada à redução de espécies Co2+ para Co0. Em todas as amostras, a adição de ferro dificultou a produção de espécies Co0 e este efeito aumentou com a quantidade de ferro em sólidos. Todos os catalisadores levaram a valores similares de conversão de monóxido de carbono em temperaturas até 300 °C. O catalisador LaCoO3 foi o mais ativo na faixa de 250-450 °C e a adição de ferro diminuiu a atividade neste intervalo de temperatura. Em temperaturas superiores a 450 °C, o efeito do ferro sobre a atividade catalítica foi dependente da sua quantidade nos sólidos. Em quantidades baixas (x= 0,1), altas (x= 0,9) ou iguais (x= 0,5) a atividade diminuiu, enquanto em quantidades intermediárias (x= 0,3) e (x= 0,7), houve um aumento. Estes resultados podem ser explicados pelo fato de que o cobalto ser facilmente reduzido na estrutura perovskita garantindo alta atividade na WGSR. A adição de quantidades elevadas de ferro (x = 0,9) gera um sólido com alta resistência à redução e, portanto, menos ativos na WGSR. Por outro lado, a adição de uma quantidade intermediária (x = 0,3) leva a um sólido capaz de ser reduzido em temperaturas superiores a 450 °C, aumentando a atividade catalítica. A partir desses resultados, pode-se concluir que óxidos com estrutura perovskita do tipo LaFe1-xCoxO3 são precursores promissores para catalisadores da WGSR em altas temperaturas (>350 °C); a adição de ferro é benéfica em quantidade suficiente para produzir uma perovskita tipo LaFe0,7Co0,3O3, obtém-se o catalisador mais ativo em altas temperaturas / Salvador
22

Nanopartículas de Pt suportadas em Al2O3 e CeO2-Al2O3: síntese e caracterização de catalisadores aplicados à reação de deslocamento gás-água

Ribeiro, Renata Uema 28 April 2011 (has links)
Made available in DSpace on 2016-06-02T19:55:30Z (GMT). No. of bitstreams: 1 3665.pdf: 6614955 bytes, checksum: 38fe505ba234583972871c7ff274e981 (MD5) Previous issue date: 2011-04-28 / Universidade Federal de Sao Carlos / Colloidal Pt nanoparticles were synthesized according to an adapted procedure from Song and co-workers [1], which it was based on the reduction of dihydrogen hexachloroplatinate by ethylene glycol in a basic solution, but using two PVP/Pt = 0,2 and 10 ratio. Both the ratio lead to monodisperse platinum nanoparticles with similar sizes (2.0 and 2.8 nm). Colloidal Pt nanoparticles solutions were incorporated into alumina during sol-gel synthesis and showed different stabilities when submitted to thermal treatment in synthetic air, He and H2 atmospheres. PVP/Pt ratio added to nanoparticles after synthesis was the main parameter considered to the stability of the particles on the support. Using a minor PVP/Pt ratio lead to particles agglomerates during calcinations step in synthetic air. On the other hand, when an excess of PVP was used stable and disperse particles were obtained during a severe thermal treatment. The anchoring of particles into support during incorporation stage could be the most plausible explanation for this. Platinum nanocatalysts supported on alumina and ceriaalumina showed catalytic activity for the water gas shift reaction. CO conversion data indicated that the increasing of CeO2 loading of 12 to 20% lead to an improvement in the catalytic activity. XPS measurements after pre-treatment in H2 confirmed the presence of Pt+on the catalyst surface containing ceria, suggesting some metal-support interaction. In situ characterization techniques allowed to a better understanding of species involved into water gas shift reaction mechanism. Through X-ray absorption near edge structure in the Pt edge measurements showed reduced Pt during reaction for all catalysts, suggesting that similar electronic density of sites was present. This was also observed in CO adsorbed DRIFTS measurements. Nevertheless, XANES spectra in the Ce edge showed some changes in oxidation state of Ce during the reaction, indicating the occurrence of redox mechanism, mediated by ceria. In situ DRIFTS experiments showed little concentrations of formates and carbonates species on the catalyst surface during the reaction, suggesting that more than one mechanism may occur simultaneously. / Nanopartículas de Pt foram preparadas seguindo um procedimento adaptado de Song e colaboradores [1], cuja metodologia consistiu na redução química do ácido hexacloroplatinico pelo etilenoglicol em meio básico, porém utilizando duas razões PVP/Pt = 0,2 e 10. Ambas as razões levaram a nanopartículas de Pt com tamanho similar (2,0 e 2,8 nm) e monodispersas. As soluções coloidais de nanoparticulas de Pt foram incorporada à alumina durante a síntese sol-gel e mostraram diferentes estabilidades quando submetidas a tratamentos térmicos em ar sintético, He e H2. A razão PVP/Pt utilizada na síntese das partículas foi o fator determinante na estabilidade das partículas no suporte. A adição de uma menor razão PVP/Pt levou a aglomeração das partículas durante a calcinação em ar sintético. Por outro lado, quando um excesso de PVP foi utilizado durante a síntese das partículas as mesmas se mostraram estáveis e dispersas no suporte quando submetidas ao mais severo tratamento. Isto foi relacionado ao ancoramento das partículas ao suporte durante a etapa de incorporação. Nanocatalisadores de Pt suportados em alumina e cério-alumina apresentaram atividade catalítica para a reação de deslocamento gás-água. Dados de conversão do CO indicaram que o aumento no teor de CeO2 de 12 para 20% levou a um aumento na atividade catalítica. Medidas de XPS após a etapa de pré-tratamento em H2 confirmaram a presença de Pt+na superfície dos catalisadores contendo ceria, sugerindo alguma interação metal-suporte. Técnicas de caracterização in situ possibilitaram um melhor entendimento do mecanismo das espécies envolvidas no mecanismo da reação de deslocamento gás-água. Medidas de XANES in situ na borda da Pt confirmaram a presença de Pt reduzida durante o curso da reação para todos os catalisadores, o que sugere a presença de sítios de Pt com densidade eletrônica similar. Isto também foi observado nas medidas de DRIFTS do CO adsorvido para os catalisadores estudados. No entanto, os espectros de XANES na borda do Ce confirmaram mudanças no estado de oxidação do Ce no decorrer da reação, indicando a ocorrência do mecanismo de reação redox, mediado pela ceria. Experimentos utilizando DRIFTS in situ identificaram pequenas concentrações de espécies do tipo formiatos e carbonatos na superfície dos catalisadores durante a reação, sugerindo que mais de um mecanismo pode ocorrer simultaneamente. Palavras chave: nanoparticulas, Platina, catalisador, reação de deslocamento gás-água, PVP.
23

Síntese e caracterização dos compostos SrTi1-xCuxO3, CuO/SrTiO3 e NiO/SrTiO3 aplicados à catálise da reação de deslocamento gás-água / Synthesis and characterization of SrTi1-xCuxO3, CuO/SrTiO3 and NiO/SrTiO3 compounds applied to catalysis of the water-gas shift reaction

Vitor Carlos Coletta 26 June 2017 (has links)
O titanato de estrôncio (SrTiO3) é um óxido de estrutura perovskita e tem sido intensamente estudado para uso em diversas aplicações, entre elas, como suporte catalítico. Entretanto, sua utilização especificamente na reação de deslocamento gás-água ainda é pouco explorada. Esta reação é de interesse para a produção de hidrogênio livre de CO, necessário para aplicações como o abastecimento de células de combustível. Este trabalho de tese teve como objetivo o estudo dos compostos SrTi1-xCuxO3, CuO/SrTiO3 e NiO/SrTiO3 como catalisadores para a reação de deslocamento gás-água, uma vez que, dentre os metais de baixo custo, Cu e Ni são altamente ativos para esta reação. As amostras SrTi1-xCuxO3 foram sintetizadas pelo método dos precursores poliméricos com calcinação em N2 e O2, possibilitando a obtenção de partículas de maior área superficial em comparação com a calcinação convencional em atmosfera ambiente. Para as amostras CuO/SrTiO3 e NiO/SrTiO3, o suporte SrTiO3, foi sintetizado pelo método de sol-precipitação e a impregnação com cobre e níquel foi realizada por via úmida. As técnicas de absorção e difração de raios-X in situ em condições de reação mostraram a estabilidade da estrutura e do estado de oxidação após o tratamento de redução. Imagens de microscopia eletrônica de varredura (MEV) e de transmissão (TEM) em conjunto com a espectroscopia de raios-X de energia dispersiva (EDX) foram utilizadas a fim de estabelecer uma relação entre a atividade catalítica e o teor a dispersão de fase ativa sobre o suporte. Todas as composições estudadas se mostraram ativas entre 250 e 350°C, entretanto, a composição NiO/SrTiO3 com 10% de Ni apresentou o melhor resultado, com uma conversão de CO a 350°C, próxima ao equilíbrio e estável por um período mínimo de10 h. / Strontium titanate (SrTiO3) is an oxide of perovskite structure and has been extensively studied for use in several applications, including as catalytic support. However, its use specifically in the water-gas shift reaction is still little explored. This reaction is of interest for the production of CO-free hydrogen, required for applications such as in fuel cell. This work aimed to study SrTi1-xCuxO3, CuO/SrTiO3 and NiO/SrTiO3 compounds to be applied as catalysts for the water-gas shift reaction, since, among the low-cost metals, Cu and Ni are highly active for this reaction. The SrTi1-xCuxO3 samples were synthesized by the polymeric precursor method with the samples submitted to a N2 and O2 calcination, making possible to obtain particles with a larger surface area compared to conventional calcination in ambient atmosphere. For the CuO/SrTiO3 and NiO/SrTiO3 samples, the SrTiO3 support was synthesized by the sol-precipitation method and the impregnation with copper and nickel on the support was performed by a wet method. The in situ X-ray absorption and diffraction techniques under reaction conditions showed the stability of the structure and the oxidation state after the reduction treatment. Scanning electron microscopy (SEM) and transmission (TEM) images in conjunction with energy dispersive X-ray spectroscopy (EDX) were used in order to establish a relationship between the catalytic activity and the content and dispersion of the active phase on the support. All the compositions studied were active at 250 to 350 °C, however, the NiO/SrTiO3 sample with 10% of Ni presented the best result, with a CO conversion at 350 °C, close to equilibrium and stable for a minimum of 10 h.
24

Processos Catalíticos Associados de Conversão do Gás Natural Em Hidrogênio e Coprodutos

MACIEL, Leonardo José Lins 22 November 2012 (has links)
Submitted by Eduarda Figueiredo (eduarda.ffigueiredo@ufpe.br) on 2015-03-11T12:50:12Z No. of bitstreams: 2 Tese_Correções_Finais_Banca.pdf: 4119383 bytes, checksum: a96ead41f0aef7ab9bb319e5d0db84cb (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-11T12:50:12Z (GMT). No. of bitstreams: 2 Tese_Correções_Finais_Banca.pdf: 4119383 bytes, checksum: a96ead41f0aef7ab9bb319e5d0db84cb (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2012-11-22 / CAPES, CTPetro e CNPq / Produção de hidrogênio de elevadas purezas e coprodutos têm sido objeto de desenvolvimentos de tecnologias usando o gás natural como matéria-prima com processamento catalítico como a desidroaromatização (DAM) associada à reforma seca (RSM) em um leito duplo com ocorrência de coprodutos em condições não oxidativas. As produções de hidrogênio previstas objetivam a utilização do monóxido de carbono de efluentes de reformas do gás natural, via reação water gas shift (WGS) e o desenvolvimento de catalisadores avançados de metais preciosos em fases dispersas sobre um suporte. Como objetivo desta pesquisa pode-se citar: i) Desenvolvimento de uma tecnologia usando o gás natural como matéria-prima para produção de hidrogênio de alta pureza, e coprodutos tais como gás de síntese e acetileno como intermediários para formulação de aromáticos, principalmente o benzeno, via desidroaromatização e a reforma seca, em condições não oxidativas, com utilização de reator de leito fixo. ii) Desenvolvimento de novos catalisadores de Pt e Au (formulação e caracterização) e o estudo detalhado dos parâmetros cinéticos, mecanisticos e em diversos suportes e seus efeitos para reação de WGS. Operações de processamento do metano em reator de leito fixo nas condições: 525°C, 550°C, 575°C, 1 atm, 155-180 cm3/min, fração molar Ar :CH4, 0,5:0,5 de metano e argônio para DAM e relação molar Ar :CH4:CO2, 0,57:0,27:0,16 para DAM/RSM. As operações em reator de leito fixo na presença da mistura dos catalisadores (2,60%)Mo-(0,5%)Ru/HZSM e (11,23%)Ni/ -Al2O3, como resultado principal apresentaram uma acentuada produção de acetileno (42,91%) e moderadas produções de hidrogênio e monóxido de carbono (16%-56% H2 e 1,45% CO, 575°C). No processo catalítico de WGS foram estudados catalisadores de platina e ouro em baixas temperaturas (120°C – 300°C) para manter a conversão total de CO nas condições diferenciais abaixo de 10%. O fluxo total de entrada foi mantido constante com uma composição padrão de gás de 6,8% CO, 8,5% CO2, 21,9% H2O e 37,4% H2. A temperatura foi variada numa faixa entre 20° e 30°C, para determinação da energia de ativação aparente. Aplicações de metodologia da cinética de processos catalíticos permitiram estimar valores de baixas energias de ativação (catalisador Pt: 53 kJ/mol – 63 kJ/mol; catalisador Au:11 kJ/mol –95 kJ/mol), os quais confirmaram os bons níveis de atividade dos catalisadores formulados para o processo WGS, com destaque para os catalisadores 2%Pt/TiO2, 2%Au/ZrO2 e 2%Au/TiO2.
25

First-principles based micro-kinetic modeling for catalysts design

Zhou, Mingxia January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Bin Liu / Efficient and selective catalysis lies at the heart of many chemical reactions, enabling the synthesis of chemicals and fuels with enormous societal and technological impact. A fundamental understanding of intrinsic catalyst properties for effective manipulation of the reactivity and selectivity of industrial catalysts is essential to select proper catalysts to catalyze the reactions we want and hinder the reactions we do not want. The progress in density functional theory (DFT) makes it possible to describe interfacial catalytic reactions and predict catalytic activities from one catalyst to another. In this study, water-gas shift reaction (WGSR) was used as a model reaction. First-principles based micro-kinetic modeling has been performed to deeply understand interactions between competing reaction mechanisms, and the relationship with various factors such as catalyst materials, structures, promoters, and interactions between intermediates (e.g., CO self-interaction) that govern the observed catalytic behaviors. Overall, in this thesis, all relevant reaction mechanisms in the model reaction on well-defined active sites were developed with first-principles calculations. With the established mechanism, the promotional effect of K adatom on Ni(111) on WGSR compared to the competing methanation was understood. Moreover, the WGSR kinetic trend, with the hydrogen production rate decreasing with increasing Ni particle diameters (due to the decreasing fractions of low-coordinated surface Ni site), was reproduced conveniently from micro-kinetic modeling techniques. Empirical correlations such as Brønsted-Evans-Polanyi (BEP) relationship for O-H, and C-O bond formation or cleavage on Ni(111), Ni(100), and Ni(211) were incorporated to accelerate computational analysis and generate trends on other transition metals (e.g., Cu, Au, Pt). To improve the numerical quality of micro-kinetic modeling, later interactions of main surface reaction intermediates were proven to be critical and incorporated successfully into the kinetic models. Finally, evidence of support playing a role in the enhancement of catalyst activity and the impact on future modeling will be discussed. DFT will be a powerful tool for understanding and even predicting catalyst performance and is shaping our approach to catalysis research. Such molecular-level information obtained from computational methods will undoubtedly guide the design of new catalyst materials with high precision.
26

Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction

Abdollahi, Farhang January 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
27

Reverse Water Gas Shift Reaction over Supported Cu-Ni Nanoparticle Catalysts

Lortie, Maxime January 2014 (has links)
CuNi nanoparticles were synthesized using a new polyol synthesis method. Three different CuxNi1-x catalysts were synthesized where x = 20, 50 and 80. The nanoparticles were deposited on carbon, C, gamma-alumina, γ-Al2O3, yttria-stabilized zirconia, YSZ, and samariumdoped ceria, SDC. Each set of catalysts was tested using the Reverse Water Gas Shift, RWGS, reaction under atmospheric pressure and at temperatures ranging from 400°C-700°C. The experiments were repeated 3 times to ensure stability and reproducibility. Platinum nanoparticles were also deposited on the same supports and tested for the RWGS reaction at the same conditions. The CuNi nanoparticles were characterized using a variety of different techniques. Xray diffraction, XRD, measurements demonstrate the resence of two CuNi solid solutions: one Cu rich solid solution, and the other a Ni rich solid solution. X-ray photo electron spectroscopy, XPS, measurements show Cu enrichment on all catalytic surfaces. Scanning electron microscopy, SEM, measurements show CuNi nanoparticles ranging in size from 4 nm to 100 nm. Some agglomeration was observed. SDC showed the best yield with all catalysts. Furthermore, high oxygen vacancy content was shown to increase yield of CO for the RWGS reaction. Cu50Ni50/SDC shows the combination of highest yield of CO and the best stability among CuNi catalysts. It also has similar yields (39.8%) as Pt/SDC at 700°C, which achieved the equilibrium yield at that temperature (43.9%). The catalyst was stable for 48 hours when exposed to high temperatures (600-700°C). There was no CH4 observed during any of the experiments when the partial pressure of the reactant gases was fed stoichiometrically. Partial pressure variation experiments demonstrated the presence of CH4 when the partial pressure of hydrogen was increased to twice the value of the partial pressure of CO2.
28

Adsorption Separation of CO2 from CO in Syngas: Improving the Conversion of the Reverse Water Gas Shift Reaction

Wilson, Sean M. W. January 2015 (has links)
In this research project, adsorption is considered for the separation of CO2 from CO for applications such as industrial syngas production and in particular to improve the conversion of the Reverse Water Gas Shift (RWGS) process. The use of adsorption technology for these applications requires an adsorbent that can effectively separate out CO2 from a gas mixture containing CO2, CO, and H2. However, adsorption of H2 is insignificant when compared to both CO2 and CO, with only CO2 and CO being the adsorbed species. The adsorption of CO2 and CO was investigated in this work for four major types of industrial adsorbents which include: activated aluminas, activated carbons, silica gels, and zeolites. Zeolites, with their ability to be fine tuned many parameters which may affect adsorption, were investigated in terms of the effect of the cations present, SiO2/Al2O3 ratios, and structure to determine how to optimize adsorption of CO2 while decreasing adsorption of CO. This will help to determine a promising adsorbent for this separation with focus on maximizing the selective adsorption of CO2 over CO. To investigate this separation three scientific experimental methods were used; gravimetric adsorption isotherm analysis, volumetric adsorption isotherm analysis, and packed bed adsorption desorption breakthrough analysis. Gravimetric and volumetric methods allow for testing the adsorbent with the individual species of CO2 and CO. This investigation will let us determine the pure component adsorption capacity, heats of adsorption, regenerability, and basic selectivity. Packed bed adsorption breakthrough experimentation was then carried out on promising adsorbents for the CO2 separation from a mixture of CO2, CO, and H2. These experiments used a gas mixture that would be comparable to that produced from the RWGS reaction to determine the multicomponent gas mixture behaviour for adsorption. Temperature swing adsorption (TSA) with a purge gas stream of H2 was then used to regenerate the adsorbent.
29

Investigations on Thermal Catalytic Conversion of Fuel Gases to Carbon Nanotubes and Hydrogen

Sun, Xinhui January 2021 (has links)
No description available.
30

High Temperature High Pressure Water Gas Shift Reaction in Zeolite Membrane Reactors

Arvanitis, Antonios 01 October 2019 (has links)
No description available.

Page generated in 0.0641 seconds