Spelling suggestions: "subject:"have structure"" "subject:"wave structure""
11 |
Investigation of nonlinear wave-induced seabed response around mono-pile foundationLin, Z., Pokrajac, D., Guo, Yakun, Jeng, D-S., Tang, T., Rey, N., Zheng, J., Zhang, J. 14 January 2017 (has links)
Yes / Stability and safety of offshore wind turbines with mono-pile foundations, affected by nonlinear wave effect and dynamic seabed response, are the primary concerns in offshore foundation design. In order to address these problems, the nonlinear wave effect on dynamic seabed response in the vicinity of mono-pile foundation is investigated using an integrated model, developed using OpenFOAM, which incorporates both wave model (waves2Foam) and Biot’s poro-elastic model. The present model was validated against several laboratory experiments and promising agreements were obtained. Special attention was paid to the systematic analysis of pore water pressure as well as the momentary liquefaction in the proximity of mono-pile induced by nonlinear wave effects. Various embedment depths of mono-pile relevant for practical engineering design were studied in order to attain the insights into nonlinear wave effect around and underneath the mono-pile foundation. By comparing time-series of water surface elevation, inline force, and wave-induced pore water pressure at the front, lateral, and lee side of mono-pile, the distinct nonlinear wave effect on pore water pressure was shown. Simulated results confirmed that the presence of mono-pile foundation in a porous seabed had evident blocking effect on the vertical and horizontal development of pore water pressure. Increasing embedment depth enhances the blockage of vertical pore pressure development and hence results in somewhat reduced momentary liquefaction depth of the soil around the mono-pile foundation. / Energy Technology Partnership (ETP), Wood Group Kenny, and University of Aberdeen; the National Science Fund for Distinguished Young Scholars (51425901) and the 111 project (B12032).
|
12 |
Modélisation non-linéaire des interactions vague-structure appliquée à des flotteurs d'éoliennes off-shore / Nonlinear modelling of wave-structureinteractions applied to off shorewind turbine platformsDombre, Emmanuel 12 June 2015 (has links)
Cette thèse est consacrée à l'étude numérique des interactions non-linéaires entre des vagues et un corps rigide perçant la surface libre. La méthode développée repose sur un modèle d'éléments de frontière qui réduit la dimensionnalité du problème d'une dimension. Dans un premier temps, un modèle2D est appliqué à des géométries simples et permet de démontrer la pertinence de l'approche envisagée pour la prédiction des mouvements d'une structure flottante soumise à des vagues monochromatiques régulières. Dans un second temps, en nous inspirant d'un modèle potentiel non-linéaire 3D développé par Grilli textit{et al.}~cite{grilli2001fully}, nous proposons une généralisation de la méthode pour des maillages triangulaires non-structurés de surfaces 3D. Le modèle développé permet de traiter des configurations arbitraires de plusieurs cylindres verticaux en interaction avec les vagues. Nous présentons des cas de validation de nature académique qui permettent d'apprécier le comportement du modèle numérique. Puis nous nous tournons vers l'application visée par EDF R&D, qui concerne le dimensionnement d'éoliennes off-shore flottantes. Un flotteur de type semi-submersible est évalué à l'aide du modèle non-linéaire / This PhD work is devoted to the study of nonlinear interactions between waves and floating rigid structures. The developed model relies on a boundary element method which reduces the dimensionality of the problem by one. First, a 2D model is applied to basic geometries and allows us to demonstrate the validity of the method for predicting the motion of a floating structrure subject to incoming monochromatic regular waves. Secondly, getting inspired by the 3D fully nonlinear potential flow model of Grilli textit{et al.}~cite{grilli2001fully}, we propose a novel model which generalizes the method for unstructured triangular meshes of 3D surfaces. The proposed model is able to deal with arbitrary configurations of multiple vertical cylinders interacting with the waves. We present academic validation test cases which show how the model works and behaves. Finally, we study situations of interest for EDF R&D related to floating off-shore wind turbines. A semi-submersible platform is evaluated with the nonlinear model
|
13 |
Modélisation non-linéaire des interactions vague-structure appliquée à des flotteurs d'éoliennes off-shore / Nonlinear modelling of wave-structureinteractions applied to off shorewind turbine platformsDombre, Emmanuel 12 June 2015 (has links)
Cette thèse est consacrée à l'étude numérique des interactions non-linéaires entre des vagues et un corps rigide perçant la surface libre. La méthode développée repose sur un modèle d'éléments de frontière qui réduit la dimensionnalité du problème d'une dimension. Dans un premier temps, un modèle2D est appliqué à des géométries simples et permet de démontrer la pertinence de l'approche envisagée pour la prédiction des mouvements d'une structure flottante soumise à des vagues monochromatiques régulières. Dans un second temps, en nous inspirant d'un modèle potentiel non-linéaire 3D développé par Grilli textit{et al.}~cite{grilli2001fully}, nous proposons une généralisation de la méthode pour des maillages triangulaires non-structurés de surfaces 3D. Le modèle développé permet de traiter des configurations arbitraires de plusieurs cylindres verticaux en interaction avec les vagues. Nous présentons des cas de validation de nature académique qui permettent d'apprécier le comportement du modèle numérique. Puis nous nous tournons vers l'application visée par EDF R&D, qui concerne le dimensionnement d'éoliennes off-shore flottantes. Un flotteur de type semi-submersible est évalué à l'aide du modèle non-linéaire / This PhD work is devoted to the study of nonlinear interactions between waves and floating rigid structures. The developed model relies on a boundary element method which reduces the dimensionality of the problem by one. First, a 2D model is applied to basic geometries and allows us to demonstrate the validity of the method for predicting the motion of a floating structrure subject to incoming monochromatic regular waves. Secondly, getting inspired by the 3D fully nonlinear potential flow model of Grilli textit{et al.}~cite{grilli2001fully}, we propose a novel model which generalizes the method for unstructured triangular meshes of 3D surfaces. The proposed model is able to deal with arbitrary configurations of multiple vertical cylinders interacting with the waves. We present academic validation test cases which show how the model works and behaves. Finally, we study situations of interest for EDF R&D related to floating off-shore wind turbines. A semi-submersible platform is evaluated with the nonlinear model
|
14 |
Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions / Méthode SWENSE bi-phasique : application à l’étude des interactions houle-structureLi, Zhaobin 27 November 2018 (has links)
Cette thèse propose un algorithme efficace pour la simulation numérique des interactions houle-structure avec des solveurs CFD bi-phasiques. L'algorithme est basé sur le couplage de la théorie potentielle et des équations bi-phasiques de Navier-Stokes. C'est une extension de la méthode Spectral Wave Explicit Navier-Stokes Equations (SWENSE) pour les solveurs CFD bi-phasiques avec une technique de capture d'interface. Dans cet algorithme, la solution totale est décomposée en une composante incidente et une composante complémentaire. La partie incidente est explicitement obtenue avec des méthodes spectrales basées sur la théorie des écoulements potentiels ; seule la partie complémentaire est résolue avec des solveurs CFD, représentant l'influence de la structure sur les houles incidentes. La décomposition assure la précision de la cinématique des houles incidentes quel que soit le maillage utilisé parles solveurs CFD. Une réduction significative de la taille du maillage est attendue dans les problèmes typiques des interactions houle structure. Les équations sont présentées sous trois formes : la forme conservative, la forme non conservative et la forme Ghost of Fluid Method. Les trois versions d'équations sont implémentées dans OpenFOAM et validées par une série de cas de test. Une technique d'interpolation efficace pour reconstruire la solution des houles irrégulières donnée par la méthode Higher-Order Spectral (HOS) sur le maillage CFD est également proposée. / This thesis proposes an efficient algorithm for simulating wave-structure interaction with two-phase Computational Fluid Dynamics (CFD) solvers. The algorithm is based on the coupling of potential wave theory and two phase Navier-Stokes equations. It is an extension of the Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method for generalized two-phase CFD solvers with interface capturing techniques. In this algorithm, the total solution isdecomposed into an incident and acomplementary component. The incident solution is explicitly obtained with spectral wave models based on potential flow theory; only the complementary solution is solved with CFD solvers, representing the influence of the structure on the incident waves. The decomposition ensures the accuracy of the incident wave’s kinematics regardless of the mesh in CFD solvers. A significant reduction of the mesh size is expected in typical wave structure interaction problems. The governing equations are given in three forms: the conservative form, the non conservative form, and the Ghost of Fluid Method (GFM) form. The three sets of governing equations are implemented in OpenFOAM and validated by a series of wave-structure interaction cases. An efficient interpolation technique to map the irregular wave solution from a Higher-Order Spectral (HOS) Method onto the CFD grid is also proposed.
|
15 |
Modulation efficiency enhancement of an optical phase modulator using one dimensional photonic crystal structuresHosseini, Seyedreza, Jamshidi, Kambiz 10 September 2019 (has links)
Slow light effect based rib silicon waveguide structures are studied in this paper to enhance modulation efficiency of an optoelectronic carrier plasma dispersion effect based phase modulator. Center frequency to achieve desired slow down factor and band width limitations of the structures are investigated through finite element method simulations. Optical modulation efficiency is modeled and the effects of doping, bias voltage and slow light on its performance are studied.
|
16 |
Analysis Of Broad-band And High-Efficiency Folded-Waveguide Slow-Wave Structure For Millimeter-Wave Traveling-Wave TubesSumathy, M 10 1900 (has links) (PDF)
Vacuum microwave tubes, such as klystron, traveling-wave tube, gyrotron are high efficiency devices, where the RF interaction structure facilitates efficient energy transfer from the kinetic energy of the high energy electron beam to the electromagnetic wave. Traveling-wave Tube is the most versatile microwave power amplifier widely used for terrestrial communication, radar and aerospace applications.
The waveguide based slow-wave structures like Millman, Karp, inter digital, grated waveguide, ring-plane, ring-bar, millitron and folded-waveguide structure gathered importance for application in millimeter-wave traveling-wave tubes. Among these millimeter-wave interaction structures, the folded-waveguide slow-wave structure became the most popular due to its robust structure, high power capability, low RF loss, simpler coupling, reasonably wide bandwidth and ease of fabrication for millimeter-wave to terahertz frequencies. Hence this thesis aims to analyse the folded-waveguide slow-wave structure for broad-banding and efficiency enhancement.
The existing approaches for the analysis of cold circuit parameters (dispersion and interaction impedance characteristics) of folded-waveguide slow-wave structure are reinvestigated and found that these have limitation, as the effects of E-plane bend and beam-hole discontinuities are ignored in the parametric analysis. A cascaded matrix equivalent circuit model includes the effect of E-plane and beam-hole discontinuities for the analysis, but reported only for the serpentine folded-waveguide slow-wave structure. The cold test measurement technique was reported only for the dispersion characteristics. Hence the measurement technique has to be extended for the measurement of interaction impedance.
The author proposes to orient the present doctoral work to (i) extend the proposed cascaded transmission matrix equivalent model for the analysis of rectangular folded-waveguide slow-wave structure, (ii) develop a non-resonant perturbation technique for the measurement of interaction impedance characteristics of the folded-waveguide slow-wave structure and also to (iii) establish new analysis models for the folded-waveguide slow-wave structure. The effect of E-plane bend and beam-hole discontinuities on the RF characteristics have been considered and simple, yet accurate closed form expressions for the computation of dispersion and interaction impedance characteristics have been established by three different approaches namely: transmission line equivalent circuit model, conformal mapping equivalent circuit model and quasi-TEM approach. The analysis results are benchmarked against 3-D electromagnetic modeling. The non-resonant perturbation theory is developed for the interaction impedance measurement. Typical Ka-band structures are fabricated by wire-EDM process and cold test measurements are carried out to benchmark the analysis approaches.
The equivalent circuit models based on lumped circuit model are simpler than the cascaded matrix equivalent circuit model and can give closed form expressions for the prediction of dispersion and interaction impedance characteristics. The quasi-TEM approach can be extended for the complicated structure like ridge-loaded FWG-SWS.
Broad-banding of the conventional folded-waveguide slow-wave structure is attempted by ridge-loading on the broad wall of the structure. The ridge-loaded folded-waveguide slow-wave structure is analyzed by parametric approach, cascaded transmission matrix equivalent circuit model and quasi-TEM approach and validated against numerical simulation. The analysis is extended for exploring the efficacy of the ridge-loading on broad-banding of the traveling-wave tube.
Finally efficiency enhancement of the folded-waveguide slow-wave structure is attempted by introducing grating on the broad wall of the structure. The analysis is carried out by numerical simulation for exploring the efficacy of the grating on efficiency enhancement of the traveling-wave tube.
|
17 |
Estrutura de ondas para um modelo de escoamento trifásico com viscosidades das fases assimétricas. / Wave structure for a three phase flow model with asymmetric phase viscosities.GUEDES, Maria Joseane Felipe. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T14:03:56Z
No. of bitstreams: 1
MARIA JOSEANE FELIPE GUEDES - DISSERTAÇÃO PPGMAT 2009..pdf: 832637 bytes, checksum: a59817bc76f58e4b327016c2e8295ba1 (MD5) / Made available in DSpace on 2018-07-23T14:03:56Z (GMT). No. of bitstreams: 1
MARIA JOSEANE FELIPE GUEDES - DISSERTAÇÃO PPGMAT 2009..pdf: 832637 bytes, checksum: a59817bc76f58e4b327016c2e8295ba1 (MD5)
Previous issue date: 2009-04 / CNPq / Neste trabalho é considerado o problema de Riemann para um sistemas de leis
de conservação modelando a recuperação de óleo de um reservatório petrolífero pela
injeção de uma mistura do tipo água e gás. supondo que o mesmo contenha inicialmente
uma mistura do tipo água e óleo. A partir da teoria de Leis de Conservação é
determinada a solução do problema de Riemann considerando os várias casos possíveis
para dados de produção. Para cada um desses dados de produção são considerados
todos os casos possíveis de injeção da mistura água/gás. Para cada caso de produção é
mostrada a existência de estados especiais de injeção separando construções distintas
de soluções no espaço de estados. Além disso, entre esses estados especiais de injeção
um deles é crítico, no sentido que a solução é dada de duas ou três maneiras distintas no
espaço de estados, porém representando a mesma solução no espaço físico - xt. Em geral a solução do problema de Riemann consiste de duas ondas separadas
por um estado intermediário constante quando o dado de produção está próximo de
situações extremas, em que a saturação inicial da água ou do óleo é maximal. Para
estados de produção com uma proporção mais homogénea da mistura de água e óleo a
solução pode consistir de até três ondas para alguns casos de injeção de uma mistura
contendo uma proporção maior de gás do que de água. Nesses casos uma onda não
clássica, i. e. uma onda transicional, deve ser usada. / In this work we consider the Riemann probíem for a system of conservation laws
modeling the oil recovery for a three-phase flow in a porous médium by the injection of
a mixture of water and gas in a reservoir whieh is initially filled with a mixture of water
and oil. Using the theory of conservation laws, the solution of the Rieman problem
is determined considering ali possibilities for the production data. For each of these
production data. ali possible cases for the injected gas/ water mixture are considered
as well. For each production case it is shown the existence of some special injection
data separating distinct constmctions of Solutions in the state space. Moreover, among
these special injection data one of them is criticai in the sense that the wave sequence
that describes the solution can be represented by two or three distinct paths in the
state space, but consisting of the same solution in the physical space - xi. In general
the solution of the Riemann problem consists of a sequence of two waves separated by
one intermediate constant state when the production data are closed to the extreme
situations where the initial water or oil saturations are maximal. For production data
with a more homogeneous initial water and oil proportion, the solution may consists
up to three waves separated by two constant intermediate states for some injected
mixtures containing a hígher proportion of gas than water. In such cases a nonelassical
wave, i. e. a transitional wave, must be used.
|
Page generated in 0.0429 seconds