• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolation of stimulus characteristics contributing to Weber's law for position.

Whitaker, David J., Bradley, A., Barrett, Brendan T., McGraw, Paul V. January 2002 (has links)
No / To examine the independent contribution of various stimulus characteristics to positional judgements, we measured vernier alignment performance for three types of Gabor stimuli. In one, only the contrast envelope of the upper and lower stimulus elements was offset, with the luminance-modulated carrier grating remaining in alignment. In the second, only the carrier grating was offset. In the third, both carrier and envelope were offset together. Performance was examined over a range of element separations. When both cues are available, thresholds for small separations are dominated by carrier offset information and are inversely proportional to carrier frequency. At large separations, thresholds are governed by the spatial scale characteristics of the envelope. For broad-band stimuli such as lines, bars or dots typically used for vernier acuity, their higher frequency content can be used when separations are small, but as separation increases a smooth transition between the scales that determine threshold results in the continuum known as Weber's law for position. That is, with increasing separation, larger scales must be used, and thresholds increase in direct proportion to 1/frequency.
2

The Impact of Graph Layouts on the Perception of Graph Properties

January 2019 (has links)
abstract: Graphs are commonly used visualization tools in a variety of fields. Algorithms have been proposed that claim to improve the readability of graphs by reducing edge crossings, adjusting edge length, or some other means. However, little research has been done to determine which of these algorithms best suit human perception for particular graph properties. This thesis explores four different graph properties: average local clustering coefficient (ALCC), global clustering coefficient (GCC), number of triangles (NT), and diameter. For each of these properties, three different graph layouts are applied to represent three different approaches to graph visualization: multidimensional scaling (MDS), force directed (FD), and tsNET. In a series of studies conducted through the crowdsourcing platform Amazon Mechanical Turk, participants are tasked with discriminating between two graphs in order to determine their just noticeable differences (JNDs) for the four graph properties and three layout algorithm pairs. These results are analyzed using previously established methods presented by Rensink et al. and Kay and Heer.The average JNDs are analyzed using a linear model that determines whether the property-layout pair seems to follow Weber's Law, and the individual JNDs are run through a log-linear model to determine whether it is possible to model the individual variance of the participant's JNDs. The models are evaluated using the R2 score to determine if they adequately explain the data and compared using the Mann-Whitney pairwise U-test to determine whether the layout has a significant effect on the perception of the graph property. These tests indicate that the data collected in the studies can not always be modelled well with either the linear model or log-linear model, which suggests that some properties may not follow Weber's Law. Additionally, the layout algorithm is not found to have a significant impact on the perception of some of these properties. / Dissertation/Thesis / Masters Thesis Computer Science 2019
3

The cognitive biology of mate choice in túngara frogs (Physalaemus pustulosus)

Akre, Karin Lise 01 August 2011 (has links)
Sexual selection is responsible for a great diversity of elaborate male traits. A general female preference for males that have exaggerated traits drives this process, but the reasons females exhibit this preference are often unclear. Recent advances in understanding signal evolution have emerged from studies of receiver psychology that focus on how receivers perceive and process communication signals. I apply the perspective of receiver psychology to understand female preference for elaborate signals in túngara frogs (Physalaemus pustulosus). Male túngara frogs produce advertisement calls of variable complexity. Females exhibit a strong preference for complex to simple calls, but previous studies have not found consistent patterns of preference between calls of variable complexity. In my doctoral research, I investigate the function of variable complexity in túngara frogs. Specifically, I address the following questions: 1) Are calls of variable complexity especially relevant to females in certain contexts? Do males respond to female behavior by increasing their production of complex calls? 2) Does male to female proximity influence female response to call complexity? 3) Are females constrained by their perceptual biology in discriminating differences in call complexity? 4) Can females remember attractive males over silences between bouts of advertising? Is working memory for attractive males dependent upon signal complexity? And 5) Does signal memorability increase with signal complexity in a linear relationship? These studies provide several new perspectives to an understanding of female preference for elaborate signals. Phonotaxis experiments demonstrate that females use elicitation behaviors to influence male production of complex calls, that proximity influences female response to signal elaboration, that females are constrained by their perceptual biology in discriminating between complex calls, that memory can influence the evolution of signal complexity, and that memorability and signal complexity share a non-linear relationship. / text
4

Influence of Rotation on the Weight of Gyroscopes as an Explanation for Flyby Anomalies

Tajmar, Martin, Assis, Andre Koch Torres 08 March 2016 (has links) (PDF)
We consider two models which lead to the prediction of a weight change of gyroscopes depending on the rate of rotation: mass-energy equivalence and Weber's force for gravitation. We calculate the order of magnitude of this effect in both models and show that Weber's model predicts a weight change depending on the spin axis orientation resembling close similarities to observed Earth flyby anomalies. however, our predicted effect is much smaller than the observed effect, which could explain why flyby anomalies were not detected anymore in recent spracecraft trajectories.
5

Influence of Rotation on the Weight of Gyroscopes as an Explanation for Flyby Anomalies

Tajmar, Martin, Assis, Andre Koch Torres January 2016 (has links)
We consider two models which lead to the prediction of a weight change of gyroscopes depending on the rate of rotation: mass-energy equivalence and Weber's force for gravitation. We calculate the order of magnitude of this effect in both models and show that Weber's model predicts a weight change depending on the spin axis orientation resembling close similarities to observed Earth flyby anomalies. however, our predicted effect is much smaller than the observed effect, which could explain why flyby anomalies were not detected anymore in recent spracecraft trajectories.
6

Internal representations of time and motion / Interne Repräsentationen von Zeit und Bewegung

Haß, Joachim 11 November 2009 (has links)
No description available.

Page generated in 0.0525 seconds