Spelling suggestions: "subject:"wellenausbreitung"" "subject:"wellenausbreitungen""
31 |
Ermittlung bleibender Bodenverformungen infolge dynamischer Belastung mittels numerischer VerfahrenWegener, Dirk 25 October 2012 (has links)
In der Arbeit wird gezeigt, wie man die Bodensteifigkeit bei sehr kleinen Dehnungen sowie die Abnahme der Steifigkeit mit zunehmender Scherdehnung in Labor- und Feldversuchen ermitteln kann. Dazu werden typische Eigenschaften mineralischer und organischer Böden einschließlich Korrelationen zusammengestellt und wesentliche Unterschiede zum Bodenverhalten bei großen Dehnungen, insbesondere hinsichtlich der Steifigkeit und der Spannungsabhängigkeit aufgezeigt.
Weiterhin wird dargelegt, wie man mit dem hypoplastischen Stoffgesetz mit intergranularen Dehnungen das Bodenverhalten bei kleinen Dehnungen wirklichkeitsnah erfassen kann und wie die Stoffparameter zu bestimmen sind. Für die realistische Erfassung des Bodenverhaltens infolge zyklischer Belastung einschließlich der Ausbildung von Hystereseschleifen wird eine Modifizierung des hypoplastischen Stoffgesetzes unter Einführung eines zusätzlichen Stoffparameters vorgenommen. Es wird gezeigt, wie dieser Parameter in zyklischen Laborversuchen bestimmt werden kann und wie damit die Akkumulation von Dehnungen bei drainierten Bedingungen bzw. von Porenwasserdrücken bei undrainierten Bedingungen zuverlässig prognostiziert werden kann.
Anhand der dynamischen Beanspruchung eines Eisenbahndammes auf weichem, organischem Untergrund wird das modifizierte hypoplastische Stoffgesetz mit intergranularen Dehnungen für ein bodendynamisches Randwertproblem angewendet und gezeigt, dass damit das Bodenverhalten realistisch abgebildet werden kann. Die Berechnungsergebnisse zeigen eine gute Übereinstimmung mit Ergebnissen von Schwingungsmessungen und Langzeitverformungsmessungen.
Es werden bodendynamische Berechnungen zur Wellenausbreitung sowohl eindimensional als auch im Halbraum mit unterschiedlichen Stoffgesetzen geführt und Vergleiche mit analytischen Lösungen vorgenommen. Dazu wird gezeigt, welche Anforderungen an numerische Berechnungen zur Wellenausbreitung, insbesondere hinsichtlich Wahl der Zeitschritte, Elementgröße bzw. Knotenabstände, Größe des FE-Netzes und Modellierung der FE-Ränder erforderlich sind.:1 Einführung
2 Bodensteifgkeit
2.1 Defnition der Scherdehnung und der Schubspannung
2.2 Versuchstechnische Ermittlung der Bodensteifgkeiten
2.3 Ermittlung der Bodensteifgkeiten im Feld
2.4 Ermittlung der Bodensteifgkeiten im Labor
2.5 Bodensteifgkeit bei sehr kleinen Dehnungen
2.6 Abnahme der Steifigkeit mit zunehmender Scherdehnung
2.7 Bodenverhalten und Scherdehnungsgrenzen
2.8 Weitere bodendynamische Eigenschaften
3 Hypoplastisches Stogesetz
3.1 Allgemeine Formulierung der Hypoplastizität
3.2 Intergranulare Dehnungen
3.3 Bereich mit sehr kleinen Dehnungen
3.4 Bereich mit kleinen bis mittleren Dehnungen
3.5 Vergleich der Ergebnisse mit dem HS-Small-Modell
3.6 Zusammenfassung und Wertung der Ergebnisse
4 Numerische Berechnungen zur Wellenausbreitung
4.1 Eindimensionale Wellenausbreitung
4.2 Wellenausbreitung im Halbraum
4.3 Wellenausbreitung im porösen Medium
5 Anwendungsbeispiel
5.1 Geometrische Situation, Baugrundschichtung
5.2 Bodenmechanische und bodendynamische Kennwerte
5.3 Schwingungsmessungen
5.4 Messung von bleibenden Verformungen
5.5 Belastung
5.6 Numerische Modellierung
5.7 Hypoplastische Berechnung
5.8 Vergleich Mess- und Berechnungsergebnisse
5.9 Linear elastische Berechnung
5.10 Vergleich der Ergebnisse mit hypoplastischer und elastischer Berechnung
6 Zusammenfassung und Ausblick
Summary
Literaturverzeichnis
Symbolverzeichnis
Anhang A Berechnungen zur Wellenausbreitung
Anhang B Eingabedateien für Berechnungen mit TOCHNOG
Anhang C Herleitungen der Biot-Theorie / In this thesis it is shown how to determine the soil stiffness at very small strains, as well as the decrease in stiffness with increasing shear strain amplitude in laboratory and field tests. Typical properties and empirical correlations of coarse-, fine-grained and organic soils are collected and significant differences in soil stiffness and stress-dependence at small strains compared to large strains are shown.
Further it is shown how one can realistically reproduce the soil behaviour at small strains with the hypoplastic constitutive model with intergranular strains and how the material parameters are determined. For a realistic prediction of soil behaviour due to cyclic loading including hysteresis loops in the stress-strain relationship, a modification of the hypoplastic constitutive model is made by using an additional material parameter. It is shown how this additional parameter can be determined in cyclic laboratory tests and how the accumulation of strains in drained conditions and excess pore pressures built up in undrained conditions can be realistically reproduced.
Based on the dynamic load on a railway embankment on soft marshy ground, the modified hypoplastic constitutive model with intergranular strains is applied for a boundary value problem. It is demonstrated, that the soil behaviour can be reproduced realistically. Numerical results show a good agreement with results of vibration measurements and measurements of permanent displacements.
A dynamical numerical analysis is performed for both one-dimensional and half-space conditions. Different constitutive models have been applied and compared with analytical solutions. The results demonstrate requirements on numerical analysis of wave propagation, in particular with regards to time steps, element size, node spacing, size of the FE mesh and boundary conditions.:1 Einführung
2 Bodensteifgkeit
2.1 Defnition der Scherdehnung und der Schubspannung
2.2 Versuchstechnische Ermittlung der Bodensteifgkeiten
2.3 Ermittlung der Bodensteifgkeiten im Feld
2.4 Ermittlung der Bodensteifgkeiten im Labor
2.5 Bodensteifgkeit bei sehr kleinen Dehnungen
2.6 Abnahme der Steifigkeit mit zunehmender Scherdehnung
2.7 Bodenverhalten und Scherdehnungsgrenzen
2.8 Weitere bodendynamische Eigenschaften
3 Hypoplastisches Stogesetz
3.1 Allgemeine Formulierung der Hypoplastizität
3.2 Intergranulare Dehnungen
3.3 Bereich mit sehr kleinen Dehnungen
3.4 Bereich mit kleinen bis mittleren Dehnungen
3.5 Vergleich der Ergebnisse mit dem HS-Small-Modell
3.6 Zusammenfassung und Wertung der Ergebnisse
4 Numerische Berechnungen zur Wellenausbreitung
4.1 Eindimensionale Wellenausbreitung
4.2 Wellenausbreitung im Halbraum
4.3 Wellenausbreitung im porösen Medium
5 Anwendungsbeispiel
5.1 Geometrische Situation, Baugrundschichtung
5.2 Bodenmechanische und bodendynamische Kennwerte
5.3 Schwingungsmessungen
5.4 Messung von bleibenden Verformungen
5.5 Belastung
5.6 Numerische Modellierung
5.7 Hypoplastische Berechnung
5.8 Vergleich Mess- und Berechnungsergebnisse
5.9 Linear elastische Berechnung
5.10 Vergleich der Ergebnisse mit hypoplastischer und elastischer Berechnung
6 Zusammenfassung und Ausblick
Summary
Literaturverzeichnis
Symbolverzeichnis
Anhang A Berechnungen zur Wellenausbreitung
Anhang B Eingabedateien für Berechnungen mit TOCHNOG
Anhang C Herleitungen der Biot-Theorie
|
32 |
Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility studyDemmler, Christoph 07 January 2022 (has links)
This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements.:1 Introduction
1.1 Borehole acoustic configurations
1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool
1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool
1.4 Anisotropy
2 Theory
2.1 Stiffness and compliance tensor
2.1.1 Triclinic symmetry
2.1.2 Monoclinic symmetry
2.1.3 Orthotropic symmetry
2.1.4 Transverse isotropic (TI) symmetry
2.1.5 Isotropy
2.2 Reference frames
2.3 Seismic wave equations for a linear elastic, anisotropic medium
2.3.1 Basic equations
2.3.2 Integral transforms
2.3.3 Christoffel equation
2.3.4 Phase slowness surfaces
2.3.5 Group velocity
2.4 Solution in cylindrical coordinates for the borehole geometry
2.4.1 Special case: vertical transverse isotropy (VTI)
2.4.2 General case: triclinic symmetry
3 Finite-difference modeling of wave propagation in anisotropic media
3.1 Finite-difference method
3.2 Spatial finite-difference grids
3.2.1 Standard staggered grid
3.2.2 Lebedev grid
3.3 Heterogeneous media
3.4 Finite-difference properties and grid dispersion
3.5 Initial conditions
3.6 Boundary conditions
3.7 Parallelization
3.8 Finite-difference parameters
4 Wave propagation in fluid-filled boreholes surrounded by TI media
4.1 Vertical transverse isotropy (VTI)
4.1.1 Monopole excitation
4.1.2 Dipole excitation
4.1.3 Quadrupole excitation
4.1.4 Summary
4.2 Horizontal transverse isotropy (HTI)
4.2.1 Monopole excitation
4.2.2 Theory of cross-multipole shear wave splitting
4.2.3 Dipole excitation
4.2.4 Quadrupole excitation
4.2.5 Hexapole waves
4.2.6 Summary
4.3 Tilted transverse isotropy (TTI)
4.3.1 Monopole excitation
4.3.2 Dipole excitation
4.3.3 Quadrupole excitation
4.3.4 Summary
4.4 Anisotropy-induced mode contaminants
4.4.1 Vertical transverse isotropy (VTI)
4.4.2 Horizontal transverse isotropy (HTI)
4.4.3 Tilted transverse isotropy (TTI)
4.4.4 Summary
5 Inversion methods
5.1 Vertical transverse isotropy (VTI)
5.2 Horizontal transverse isotropy (HTI)
5.2.1 Inverse generalized Alford rotation
5.2.2 Inversion method based on dipole excitations
5.2.3 Inversion method based on quadrupole excitations
5.3 Tilted transverse isotropy (TTI)
5.4 Challenges in real measurements
5.4.1 Signal-to-noise ratio (SNR)
5.4.2 Tool eccentricity
6 Conclusions
References
List of Abbreviations and Symbols
List of Figures
List of Tables
A Integral transforms
A.1 Laplace transform
A.2 Spatial Fourier transform
A.3 Azimuthal Fourier transform
A.4 Meijer transform
B Stiffness and compliance tensor
B.1 Rotation between reference frames
B.2 Cylindrical coordinates
C Christoffel equation
C.1 Cartesian coordinates
C.2 Cylindrical coordinates
D Processing of borehole acoustic waveform array data
D.1 Time-domain methods
D.2 Frequency-domain methods
D.2.1 Weighted spectral semblance method
D.2.2 Modified matrix pencil method
|
Page generated in 0.0718 seconds