• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 96
  • 69
  • 49
  • 46
  • 14
  • 14
  • 14
  • 10
  • 7
  • 6
  • 6
  • 6
  • 3
  • 3
  • Tagged with
  • 731
  • 122
  • 93
  • 50
  • 49
  • 39
  • 38
  • 38
  • 37
  • 37
  • 35
  • 35
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Wet Adhesion of Polyvinylamine-Phenylboronic Acid to Cellulose Hydrogel

Chen, Wei 11 1900 (has links)
<p> The ability of a never-dried paper web on a paper machine to resist breakage is commonly referred to as paper wet-web strength. Low wet-web strength can lead to frequent breaks which interrupt production and lower paper machine efficiency. Currently, no commercial products provide the function of enhancing wet-web strength. Boronic acid derivatized polyvinylamine (PVAm-PBA) showed high instantaneous wet adhesion to regenerated cellulose membranes. The objective of the research summarized in this thesis was to determine the factors and mechanisms dictating PVAm-PBA adhesion to wet cellulose. In addition, narrowly distributed PVAm microgel was prepared and the wet adhesion of boronate-microgels to cellulose is reported.</p> <p> The phase behavior and surface tension of PVAm-PBA were measured as functions of pH and the degree of PBA substitution. The pH ranges over which phase separation occurred increased with PBA substitution. 150 kDa PVAm-PBA with 4% derivatization phased separated at pH 8.5 to 9.5.The copolymer based on 51 % substitution was insoluble over most of the pH range. The hydrophobicity of copolymers was reflected in the significant lowering of surface tension particularly at high pH. Additionally, fructose, which binds to borate, influenced the titration curves but did not influence surface tension.</p> <p> Pairs of wet, regenerated cellulose films were laminated with PVAm-PBA and the forces required to delaminate the never-dried laminates, were measured as functions of adhesive structure and application conditions. The greatest wet adhesion was obtained with 150 kDa PVAm with 16% of the amines bearing phenylboronic moieties. The pH at which the PVAm-PBA was adsorbed onto the cellulose was the dominant process parameter. The specific role of the phenyl boronic groups was illustrated in two ways: a) replacing the B(OH)2 with OH (i.e. phenol) gave much lower adhesion; and, b) wet adhesion was greatly reduced by the presence of sorbitol which effectively competes with cellulose for boronate binding sites.</p> <p> The interaction of boronate and cellulose was studied. Owing to poor solubility of cellulose, two model polymers: dextran and hydroxyethyl cellulose (HEC) and two saccharides: glucose and cellobiose were measured by boron NMR measurement, tensile extension, fluorescence spectra, viscometer and peeling test methods. In conclusion, carbon-1, 2 diols at one end of cellulose chain can react with boronic acid. By contrast, carbon-2, 3 diols, which are abundant on cellulose chains, cannot react with boronic acid and the other diols, such as carbon-3, 4 diols and carbon-4, 6 diols cannot react with boronic acid. The high adhesion of boronate containing polymers to cellulose membranes was attributed to boronate ester formation with the cellulose end groups on the membrane surfaces. </p> <p> Finally, a simple and effective methodology was demonstrated for the preparation of polyvinylamine microgel with a narrow distribution. Boronate derivatives of PVAm microgels displayed very high wet adhesion to cellulose over a broad pH range.</p> / Thesis / Doctor of Philosophy (PhD)
72

Electrocardiogram Signal Quality Comparison Between A Dry Electrode and A Standard Wet Electrode over a Period of Extended Wear

Schofield, Jamie Rae 08 May 2012 (has links)
No description available.
73

Nutrient Removal Performance and Evaluation of a Combined Sewer Overflow Wet Weather Treatment Facility

Wang, Zixian 01 July 2004 (has links)
No description available.
74

CONTROL OF DIESEL PARTICULATE AND GASEOUS EMISSIONS USING A SINGLE-STAGE TUBULAR WET ELECTROSTATIC PRECIPITATOR

SAIYASITPANICH, PHIRUN January 2006 (has links)
No description available.
75

Wet Oxidation Performance of Type 310S Stainless Steel

Mahboubi, Shooka January 2018 (has links)
High-temperature wet oxidation resistance of Type 310S stainless steel arises from the formation of a thin, adherent and compact external Cr2O3 scale that is more protective compared with the other oxides. Stability of the Cr2O3 scale is often at risk in the presence of water vapour at higher temperatures, which promotes the loss of oxidized Cr to volatilization. Continuous volatilization of the Cr2O3 scale accelerates the rate of oxidation and increases the risk of non-protective Fe-rich oxide formation that immensely contributes to the oxide thickening (breakaway oxidation). In this study, the possibility of surrogating high-pressure supercritical water with an ambient pressure air-10% H2O mixture is studied at temperatures associated with the predicted coolant outlet conditions in the current GEN IV design concepts. Factors influencing structure and composition of the Cr2O3 scale during wet oxidation are then examined in the wet environments. An increase in the total gas pressure, water vapour partial pressure and temperature is shown to accelerate the Fe-rich oxide formation by increasing the rate of oxidized Cr loss. A more complete physical description of the oxidation kinetics in terms of the evolution of the oxide scale structure and composition at the various exposure conditions is also reported. Presence of small amount of Mn in the alloy is shown herein to be beneficial as it assists the formation of a MnCr2O4 layer on top of the Cr2O3 scale, which serves to reduce the volatilization rate. It is shown however that the MnCr2O4 layer itself is only temporary protective and becomes prone to volatilization (loss of oxidized Cr) at relatively high temperatures, pressures and exposure times. The formation of a MnCr2O4 cap is therefore, only a temporary solution for delaying the onset of accelerated Fe-rich oxide formation. Addition of Si is proposed to be a more promising way of controlling the onset of the Fe-rich oxide formation. Increase in the Si content to ~6 wt.% results in the formation of a continuous SiO2 barrier layer under the Cr2O3 scale as well as Cr-rich silicide intermetallic phases in the starting microstructure that serve as effective Cr reservoirs in helping to maintain the structure and composition of the compact protective Cr2O3 scale despite the continued loss of oxidized Cr to volatilization. / Thesis / Doctor of Philosophy (PhD) / The effects of total gas pressure, water vapour partial pressure, temperature and minor alloying elements (Mn and Si in particular) on the wet oxidation performance of Type 310S stainless steel were examined within the context of the stability of the protective chromia (Cr2O3) scale formed. Focus was placed on examining factors that influence the onset of accelerated linear oxidation associated with the Fe-rich oxide formation and oxide thickening. Links between changes in structure and composition of the protective Cr2O3 scale and breakaway oxidation as exhibited in water vapour-containing environments are made using advanced electron microscopy techniques. Si addition up to ~6 wt.% assists the formation of a continuous silica (SiO2) barrier layer under the Cr2O3 scale as well as Cr-rich silicide intermetallic phases that act as reservoirs to supply for the oxidized Cr lost to volatilization. Si addition is proposed to be a promising way of prohibiting Fe-rich oxide formation albeit modifications to the morphology of the silicide intermetallic phases are required.
76

Quantifying the Relationship Between Skid Resistance and Wet Weather Accidents for Virginia Data

Kuttesch, Jeffrey S. 13 December 2004 (has links)
One of the factors contributing to motor vehicle crashes is lack of sufficient friction at the tire-pavement interface. Although the relationship between surface friction and roadway safety has long been recognized, attempts to quantify the effect of pavement skid resistance on wet accident rates have produced inconsistent results. This thesis analyzes the relationships between skid resistance, accident, and traffic data for the state of Virginia. The correlation between wet skid resistance measured with a locked-wheel trailer using a smooth tire and wet accident rates is examined. Additionally, the influence of traffic volumes on accident rates is considered. The research used accident and skid data from the Virginia wet accident reduction program as well as from sections without pre-identified accident or skid problems. The wet accident data was aggregated in 1.6 km (1 mi) sections and divided by the annual traffic to obtain wet accident rates. The minimum skid number measured on each of these sections was then obtained and added to the database. Regression analyses indicated that there is statistically significant effect of skid resistance on wet accident rate; the wet accident rate increases with decreasing skid numbers. However, as expected, skid resistance alone does a poor job of modeling the variability in the wet accident rates. In addition, the wet accident rate also decreases with increasing traffic volume. Based on the data studied, a target skid number (SN(64)S) of 25 to 30 appears to be justified. / Master of Science
77

Investigation of wet paper cohesive properties

Guerrero Serrato, Alexander 09 July 2008 (has links)
Wet web paper cohesive properties behave in a similar way than tensile strength properties. The result was obtained using an unique apparatus developed by the IPST, which allows the cohesive strength determination for different wet web solids content. With the results a linear relation can be established between the cohesive strength index (obtained with the splitting apparatus) and the tensile strength index (obtained with the Instron). The splitting apparatus results can be used to calculate strain based on the work of Osterberg.
78

PERFORMANCE EVALUATION OF WET PLATE ESP FOR SUB-MICRON PARTICLES

Shah, Hardikkumar G. 17 May 2006 (has links)
No description available.
79

Systemic Network-Level Approaches for Identifying Locations with High Potential for Wet and Hydroplaning Crashes

Velez Rodriguez, Kenneth Xavier 02 September 2021 (has links)
Crashes on wet pavements are responsible for 25% of all crashes and 13.5% of fatal crashes in the US (Harwood et al. 1988). This number represents a significant portion of all crashes. Current methods used by the Department of Transportations (DOTs) are based on wet over dry ratios and simplified approaches to estimate hydroplaning speeds. A fraction of all wet crashes is hydroplaning; although they are related, the difference between a "wet crash" and "hydroplaning" is a wet-crash hydrodynamic-based severity scale is less compared to hydroplaning where the driver loses control. This dissertation presents a new conceptual framework design to reduce wet- and hydroplaning-related crashes by identifying locations with a high risk of crashes using systemic, data-driven, risk-based approaches and available data. The first method is a robust systemic approach to identify areas with a high risk of wet crashes using a negative binomial regression to quantify the relationship between wet to dry ratio (WDR), traffic, and road characteristics. Results indicate that the estimates are more reliable than current methods of WDR used by DOTs. Two significant parameters are grade difference and its absolute value. The second method is a simplified approach to identify areas with a high risk of wet crashes with only crash counts by applying a spatial multiresolution analysis (SMA). Results indicate that SMA performs better than current hazardous-road segments identification (HRSI) methods based on crash counts by consistently identifying sites during several years for selected 0.1 km sections. A third method is a novel systemic approach to identify locations with a high risk of hydroplaning through a new risk-measuring parameter named performance margin, which considers road geometry, environmental condition, vehicle characteristics, and operational conditions. The performance margin can replace the traditional parameter of interest of hydroplaning speed. The hydroplaning risk depends on more factors than those identified in previous research that focuses solely on tire inflation pressure, tire footprint area, or wheel load. The braking and tire-tread parameters significantly affected the performance margin. Highway engineers now incorporate an enhanced tool for hydroplaning risk estimation that allows systemic analysis. Finally, a critical review was conducted to identify existing solutions to reduce the high potential of skidding or hydroplaning on wet pavement. The recommended strategies to help mitigate skidding and hydroplaning are presented to help in the decision process and resource allocation. Geometric design optimization provides a permanent impact on pavement runoff characteristics that reduces the water accumulation and water thickness on the lanes. Road surface modification provides a temporary impact on practical performance and non-engineering measures. / Doctor of Philosophy / Crashes on wet pavements are responsible for 25% of all crashes and 13.5% of fatal crashes in the US (Harwood et al. 1988). This number represents a significant portion of all crashes. Current procedures used by DOTs to identify locations with a high number of wet crashes and hydroplaning are too simple and might not represent actual risk. A fraction of all wet crashes is hydroplaning, although they are related to the difference between a "wet crash" and "hydroplaning" is a wet crash water-vehicle interaction is less compared to hydroplaning where the driver loses control. This dissertation presents a new procedure to evaluate the road network to identify locations with a high risk of wet crashes and hydroplaning. The risk estimation process uses data collected in the field to determine the risk at a particular location and, depending on the available data a transportation agency uses, will be the approach to apply. The first statistical method estimates the frequency of wet crashes at a location. This estimate is developed by using a statistical model, negative binomial regression. This model measures the frequency of dry crashes, wet crashes, traffic, and road characteristics to determine the total number of wet crashes at a location. Results indicate that this option is more reliable than the current methods used by DOTs. They divide the number of wet crashes by the number of dry crashes. Two elements identified to influence the results are the difference in road grade and its absolute value. The second statistical method to estimate wet crashes considers crash counts by applying a statistical process, spatial multiresolution analysis (SMA). Results indicate that SMA performs better than current processes based only on the crash counts. This option can identify the high-risk location for different years, called consistency. The more consistent the method is, the more accurate is the results. A third statistical method is a novel way to estimate hydroplaning risk. Hydroplaning risk is currently based on finding the maximum speed before hydroplaning occurs. A vehicle's performance related to the water-film thickness provides an estimation method developed by (Gallaway et al. 1971), which includes rainfall intensities, road characteristics, vehicle characteristics, and operating conditions. The hydroplaning risk depends on more aspects than tire inflation pressure, tire footprint area, or vehicle load on the wheel. The braking and tire tread affect the performance margin. Highway engineers can use this improved hydroplaning risk-estimation tool to analyze the road network. Finally, a critical review showed the available solutions to reduce the probability of having a wet crash or hydroplaning on wet pavement. The recommended strategies to mitigate wet crashes and hydroplaning provide information to allocate resources based on proven, practical strategies. Road geometry design can be optimized to remove water from the road. This geometry is a permanent modification of pavement characteristics to reduce water accumulation and water thickness on the road. Road surface treatments and non-engineering measures provide temporary measures to improve vehicle performance or driver operation.
80

Simulation study of surfactant transport mechanisms in naturally fractured reservoirs

Abbasi Asl, Yousef 03 January 2011 (has links)
Surfactants both change the wettability and lower the interfacial tension by various degrees depending on the type of surfactant and how it interacts with the specific oil. Ultra low IFT means almost zero capillary pressure, which in turn indicates little oil should be produced from capillary imbibition when the surfactant reduces the IFT in naturally fractured oil reservoirs that are mixed-wet or oil-wet. What is the transport mechanism for the surfactant to get far into the matrix and how does it scale? Molecular diffusion and capillary pressure are much too slow to explain the experimental data. Recent dynamic laboratory data suggest that the process is faster when a pressure gradient is applied compared to static tests. A mechanistic chemical compositional simulator was used to study the effect of pressure gradient on chemical oil recovery from naturally fractured oil reservoirs for several different chemical processes (polymer, surfactant, surfactant-polymer, alkali-surfactant-polymer flooding). The fractures were simulated explicitly by using small gridblocks with fracture properties. Both homogeneous and heterogeneous matrix blocks were simulated. Microemulsion phase behavior and related chemistry and physics were modeled in a manner similar to single porosity reservoirs. The simulations indicate that even very small pressure gradients (transverse to the flow in the fractures) are highly significant in terms of the chemical transport into the matrix and that increasing the injected fluid viscosity greatly improves the oil recovery. Field scale simulations show that the transverse pressure gradients promote transport of the surfactant into the matrix at a feasible rate even when there is a high contrast between the permeability of the fractures and the matrix. These simulations indicate that injecting a chemical solution that is viscous (because of polymer or foam or microemulsion) and lowers the IFT as well as alters the wettability from mixed-wet to water-wet, produces more oil and produces it faster than static chemical processes. These findings have significant implications for enhanced oil recovery from naturally fractured oil reservoirs and how these processes should be optimized and scaled up from the laboratory to the field. / text

Page generated in 0.0609 seconds