Spelling suggestions: "subject:"ring imaginal diss"" "subject:"ring imaginal disk""
1 |
Συμμετοχή του γονιδίου wiser στο σχηματισμό του προσθοπίσθιου άξονα του φτερού κι αλληλεπίδρασή του με το γονίδιο Notch στη Drosophila melanogasterΡούσσου, Ηλιάννα-Γεωργία 20 October 2009 (has links)
Το φυλοσύνδετο γονίδιο wiser (CG32711) είναι απαραίτητο για την ανάπτυξη της Drosophila melanogaster. Η μελέτη μιας θερμοευαίσθητης, θανατογόνου μετάλλαξης που ονομάζεται wisertsl αποκάλυψε ότι το γονίδιο wiser εμπλέκεται μεταξύ άλλων στην ανάπτυξη των φτερών. Η μετάλλαξη wisertsl οφείλεται σε ένα P στοιχείο (7E P) που βρίσκεται 490 bp ανοδικά του σημείου έναρξης της μεταγραφής του γονιδίου wiser. 95 bp καθοδικά του 7E P στοιχείου υπάρχει μια P{lacW} ένθεση υπεύθυνη για τη θανατογόνο μετάλλαξη PL26. Οι μεταλλάξεις wisertsl και PL26 είναι αλληλόμορφα του ίδιου γονιδίου ενώ 12000 περίπου βάσεις ανοδικά του γονιδίου wiser και 490 bp ανοδικά του γονιδίου trf2 υπάρχει μια άλλη P{lacW} ένθεση που είναι υπεύθυνη για τη θανατογόνο μετάλλαξη PL28. Οι PL26 και PL28 δεν δείχνουν συμπληρωματικότητα με τη μετάλλαξη wisertsl όσον αφορά το θανατογόνο φαινότυπο στους 29ºC. Όμως το διαγονίδιο UAS-wiser δε διασώζει το θανατογόνο φαινότυπο του PL28.
Τα αποτελέσματα της παρούσας εργασίας αποκάλυψαν ότι: 1) Το γονίδιο wiser αλληλεπιδρά με το γονίδιο dpp. Εκτοπική έκφραση του διαγονιδίου (UAS wiser) υπό τον έλεγχο του οδηγού στελέχους apGAL4, μειώνει την έκφραση του dpp στην περιοχή του εμβρυικού δίσκου που θα δώσει τμήμα του θώρακα (notum). 2) Σε ομόζυγα wisertsl άτομα η έκφραση των γονιδίων dpp, dad, omb και salm (όπως αποκαλύπτεται από την έκφραση των αντίστοιχων –lacZ διαγονιδίων) μειώνεται στον εμβρυικό δίσκο του φτερού. Τα παραπάνω γονίδια είναι απαραίτητα για την ανάπτυξη του προσθοπίσθιου άξονα του εμβρυικού δίσκου του φτερού που σημαίνει ότι και το γονίδιο wiser εμπλέκεται στο σχηματισμό του. 3) Το γονίδιο wiser αλληλεπιδρά με το γονίδιο Notch (N) καθώς N wisertsl /wisertsl θηλυκά έχουν εντονότερα φαγωμένα φτερά. 4) Οι μεταλλάξεις wisertsl και PL28 είτε αφορούν και οι δύο το γονίδιο wiser ή η PL28 αφορά το γονίδιο trf2 που σημαίνει ότι και αυτό εμπλέκεται στο σχηματισμό του φτερού. / The X- linked wiser (CG32711) gene is a vital gene for the development of Drosophila melanogaster. The study of a temperature sensitive lethal mutation, named wisertsl, revealed that the wiser gene is implicated among others in the development of wings. The wisertsl mutation is due to a wild P element (7E P) located 490 bp upstream of the presumed transcription start site of the gene wiser at the region 7Ε. 95 bp downstream of the 7E P element is located a P{lacW} responsible for the lethal mutation PL26 and ~ 12000 bp upstream of the gene wiser and 490 bp upstream of the gene trf2 exists another P{lacW} insertion which is responsible of the lethal mutation PL28. The mutations PL26 and PL28 do not show complementation with the wisertsl mutation as regards the lethal phenotype at 29°C. However, while the transgene UAS-wiser saves the lethal phenotypes of wisertsl and PL26 it does not save the lethal phenotype of the mutation PL28.
The present data study revealed that: 1) The wiser gene interacts with the dpp gene. Ectoping expression of the UAS wiserCDS construct under the control of apGAL4 driver, reduced the dpp expression (revealed by dpp-lacZ) in the notum territory of the wing imaginal disc. 2) In the homozygous wisertsl individuals the expression of dpp, dad, salm and omb genes (revealed by the corresponding -lacZ strains) is reduced in the wing imaginal disc. The above genes are implicated in the development of the anterior-posterior (A/P) axis of the wing imaginal disc. 3) The wiser gene interacts with the Notch (N) gene. N wisertsl/wisertsl females have stronger notching phenotype. 4) The induction of mitotic clones revealed that the mutation PL28 either concerns an enhancer of the wiser gene or the gene trf2. At the late case the gene trf2 must affect the development of the wings as well.
|
2 |
Étude des conséquences d’un stress chronique du Réticulum Endoplasmique (RE) chez Drosophila melanogaster / Study of the consequences of a chronic ER stress in Drosophila melanogasterPerochon, Jessica 21 October 2015 (has links)
Le réticulum endoplasmique (RE) est un organite assurant de nombreuses fonctionscellulaires telles que la conformation et des modifications post-traductionnelles des protéines ou lemaintien de l’homéostasie calcique. Cet organite est donc un site crucial pour réguler le maintien del’homéostasie cellulaire et tissulaire des organismes multicellulaires. Des altérations de ses fonctionsconduisent à l’accumulation de protéines mal-conformées qui sont observées dans de nombreusespathologies humaines telles que des cancers ou des maladies inflammatoires chroniques. Ce stressdéclenche une réponse adaptative connue sous le nom de réponse aux protéines mal-conformées(UPR) qui permet à la cellule de supprimer ses sources et conséquences. Néanmoins, l’intensité et lachronicité du stress peuvent entrainer une modification de l’UPR qui conduit alors à l’élimination dela cellule par apoptose. A ce jour, les processus moléculaires qui permettent à l’UPR d’induirel’apoptose restent flous. De plus, l’implication de l'UPR dans la régulation de processuscompensatoires n'a jamais été étudiée. Mes travaux de thèse apportent une meilleurecompréhension de ces mécanismes à travers l’étude comparative de différents modèles de stresschronique du RE, qui dépendent d’une dérégulation de l’homéostasie protéique et/ou calcique. Ilssoulignent également le rôle essentiel de la branche PERK/ATF4 de l’UPR dans l’induction de deuxvoies parallèles et indépendantes. D’une part, PERK promeut une apoptose dépendante des caspasesvia une répression de l'expression de diap1, et d‘autre part, elle induit un retard de développement àtravers une induction de l’expression de dilp8 dépendante de la voie JNK. Mes données suggèrentégalement une spécificité tissulaire des signalisations déclenchées en réponse à un stress chroniquedu RE. / The endoplasmic reticulum (ER) is an organelle which ensures various cellular functionssuch as protein maturation and folding or calcium homeostasis maintenance. That is why ER is acrucial site of cell and tissue homeostasis regulation in multicellular organisms. Disruption of ERfunctions leads to misfolded-protein accumulation and is observed in a great number of devastatinghuman diseases. This ER stress triggers an adaptive response named Unfolded Protein Response(UPR) in order to attempt to resolve its sources and consequences. Nevertheless, the intensity andchronicity of ER stress can change this response and lead to the apoptosis of stressed cells. To thisdate, the molecular processes that regulate UPR-induced apoptosis remain unclear. Furthermore, theUPR contribution in the modulation of compensatory mechanisms in response to ER stress has neverbeen studied. This work contributes to a better understanding of these processes through acomparative study of various chronic ER stresses, which depend on the disruption of proteostasis orcalcium homeostasis. During my thesis, I have established the essential role of the PERK/ATF4 branchof the UPR in the induction of two parallel and independent pathways. One promotes apoptosisthrough the down-regulation of the diap1 gene while the other interferes with the induction of adevelopmental delay though a JNK signaling-dependent dilp8 expression. My results also suggest thatchronic ER stress response is tissue specific.
|
3 |
Comparative analysis of organ size, shape, and patterning in diverse speciesSiomava, Natalia 21 December 2016 (has links)
No description available.
|
4 |
Self-organized Growth in Developing EpitheliaMumcu, Peer 28 December 2011 (has links) (PDF)
The development of a multicellular organism, such as a human or an animal, begins with the fertilization of an egg cell. Thereupon the organism grows by repeated cell divisions until the adult size is reached and growth stops. Although it is known that intrinsic mechanisms determine the final size of developing organs and organisms, the basic principles of growth control are still poorly understood. However, there is strong evidence that certain morphogens, which are a special class of signaling molecules, act as growth factors and play a key role in growth control.
In this work, growth control is studied from a mainly theoretical viewpoint. A discrete vertex model describing the organization of cells by a network of polygons is used, including a description of the cell cycle and a description of dynamical morphogen distributions. Self-organized growth is studied by introducing growth rules that govern cell divisions based on the local morphogen level. This discrete description is complemented by a continuum theory to gain further insight into the dynamics of self-organized growth processes.
The theoretical description is applied to the developing wing of the fruit fly Drosophila melanogaster. In the developing wing, which is an epithelium consisting of single-layered cell sheets, the morphogen Decapentaplegic (Dpp) acts as a key growth factor. Experimental data shows that the Dpp distribution is dynamic and adapts to the size of the developing wing. Two mechanisms that rely on a regulatory molecule species and lead to such a dynamic behaviour of the Dpp distribution are studied. Several growth rules are tested and the resulting growth behaviour is quantitatively compared to experimental data of the developing wing. A particular growth rule, that triggers a cell division when the local morphogen level has increased by a certain relative amount, is found to be consistent with experimental observations under normal and several perturbed conditions. It is shown that mechanical stresses that arise due to spatial growth inhomogeneities can have a stabilizing effect on the growth process.
|
5 |
The role of Dpp and Wingless signaling gradients in directing cell shape during Drosophila wing imaginal disc development / Die Rolle von Dpp und Wingless Signalgradienten bei der Kontrolle der Zellform während der Drosophila FlügelimaginalscheibenentwicklungWidmann, Thomas J. 04 March 2010 (has links) (PDF)
Animal morphogenesis is largely driven by concerted changes in the shape of individual cells. However, how cell shape changes are regulated and coordinated in developing animals is not well understood. Here we show that the two perpendicular signaling gradients of the morphogens Dpp, a TGF-β homologue, and Wingless, a Wnt family member, maintain tissue homoeostasis and control cell shape changes in the developing Drosophila wing. Clones of cells lacking Dpp or Wingless signaling invaginate apically, shorten apico-basally and subsequently extrude basally without disruption of the epithelium. During early larval development, the onset of Dpp and Wingless signaling correlates with the cuboidal-to-columnar cell shape transition of wing disc cells. Gradients in apical-basal length of columnar cells correlate during late larval development with the gradients of Dpp and Wingless signaling activities. Cells receiving high levels of Dpp and Wingless signaling are most elongated and apically constricted. Low levels of Dpp and Wingless signaling correlate with a shorter and apically wider cell morphology. Dpp and Wingless signaling is cell-autonomously required for maintaining the elongated columnar cell shape of late larval wing disc cells. Overactivation of these pathways results in precocious cell elongation during early larval development. These morphogenetic responses to Dpp and Wingless require the transcription factor complexes Mad and Tcf/β-catenin, respectively, indicating that they are mediated by changes in gene expression. The morphogenetic function of Wingless is in part mediated by one of its target genes, the transcription factor Vestigial. Wingless signaling promotes an enrichment of E-cadherin at the adherens junctions, and we show that E-cadherin is required to maintain apical-basal cell length. Dpp signaling controls the subcellular distribution of the activities of the small GTPase Rho1 and the regulatory light chain of non-muscle myosin II (MRLC). Alteration of Rho1 or MRLC activity has a profound effect on apical-basal cell length. Finally, we demonstrate that a decrease in Rho1 or MRLC activity rescues the shortening of cells with compromised Dpp signaling. Our results identify cell-autonomous roles for Dpp and Wingless signaling in promoting and maintaining the elongated columnar shape of wing disc cells. Furthermore, they suggest that Dpp and Wingless signaling control cell shape by regulating the actin-MyosinII/E-cadherin network. / Morphogenese in Tieren wird in hohem Maße von konzertierten Zellformveränderungen einzelner Zellen bewirkt. Es ist jedoch noch nicht hinreichend verstanden, wie Zellformveränderungen in sich entwickelnden Tieren reguliert und koordiniert werden. Hier zeigen wir, dass die zwei zueinander senkrecht stehenden Signalgradienten der Morphogene Dpp, eines TGF-β Homologs, und Wingless, eines Mitglieds der Wnt Familie, im sich entwickelnden Drosophila-Flügel Gewebe-Homöostase aufrechterhalten und Zellformveränderungen kontrollieren. Klone von Zellen, denen Dpp oder Wingless Signalaktivität fehlt, invaginieren von ihrer apikalen Seite her, verkürzen sich in apiko-basaler Richtung und extruieren im Folgenden auf der basalen Seite des Epithels, ohne es zu zerstören. Während der frühen Larvalentwicklung korreliert das Anschalten der Dpp und Wingless Signale mit der Zellformveränderung der Flügelscheibenzellen von kuboidal zu kolumnar. Gradienten in der apiko-basalen Länge von kolumnaren Zellen korrelieren während der späten Larvalentwicklung mit den Gradienten der Dpp und Wingless Signalaktivitäten. Zellen, die hohe Werte an Dpp und Wingless Signalen empfangen, sind am meisten elongiert und apikal konstringiert. Niedrige Werte von Dpp und Wingless Signalen korrelieren mit kürzerer und apikal weiterer Zellmorphologie. Dpp und Wingless Signale werden zellautonom gebraucht für die Aufrechterhaltung der elongierten Zellform von späten larvalen Flügelscheibenzellen. Die Überaktivierung dieser Signalwege führt zu vorzeitiger Zellverlängerung während der frühen Larvalentwicklung. Diese morphogenetischen Antworten auf Dpp und Wingless benötigen die Transkriptionsfaktor-Komplexe Mad beziehungsweise Tcf/β-catenin, was darauf hindeutet, dass sie durch Änderungen in der Genexpression vermittelt werden. Die morphogenetische Funktion von Wingless wird teilweise durch eines seiner Zielgene, Vestigial, vermittelt. Wingless Signale fördern die Anreicherung von E-cadherin an den Adherensverbindungen. Wir zeigen hier, dass E-cadherin gebraucht wird, um apiko-basale Zelllänge aufrechtzuerhalten. Dpp Signale kontrollieren die subzelluläre Verteilung der Aktivitäten der kleinen GTPase Rho1 und der regulatorischen leichten Kette von nicht-muskulärem Myosin II (MRLC). Eine Änderung in der Rho1 oder MRLC Aktivität hat weitreichende Auswirkungen auf die apiko-basale Zelllänge. Schließlich zeigen wir noch, dass eine Verringerung der Rho1 oder MRLC Aktivitäten die Zellverkürzung von Dpp-Signal kompromittierten Zellen rettet. Unsere Resultate identifizieren zellautonome Rollen für Dpp und Wingless Signale in der Förderung und Aufrechterhaltung der elongierten kolumnaren Zellform von Flügelimaginalscheibenzellen. Darüber hinaus suggerieren sie, dass Dpp und Wingless Signale die Zellform durch die Regulierung des Aktin-MyosinII/E-cadherin-Netzwerks kontrollieren.
|
6 |
The role of Dpp and Wingless signaling gradients in directing cell shape during Drosophila wing imaginal disc developmentWidmann, Thomas J. 21 December 2009 (has links)
Animal morphogenesis is largely driven by concerted changes in the shape of individual cells. However, how cell shape changes are regulated and coordinated in developing animals is not well understood. Here we show that the two perpendicular signaling gradients of the morphogens Dpp, a TGF-β homologue, and Wingless, a Wnt family member, maintain tissue homoeostasis and control cell shape changes in the developing Drosophila wing. Clones of cells lacking Dpp or Wingless signaling invaginate apically, shorten apico-basally and subsequently extrude basally without disruption of the epithelium. During early larval development, the onset of Dpp and Wingless signaling correlates with the cuboidal-to-columnar cell shape transition of wing disc cells. Gradients in apical-basal length of columnar cells correlate during late larval development with the gradients of Dpp and Wingless signaling activities. Cells receiving high levels of Dpp and Wingless signaling are most elongated and apically constricted. Low levels of Dpp and Wingless signaling correlate with a shorter and apically wider cell morphology. Dpp and Wingless signaling is cell-autonomously required for maintaining the elongated columnar cell shape of late larval wing disc cells. Overactivation of these pathways results in precocious cell elongation during early larval development. These morphogenetic responses to Dpp and Wingless require the transcription factor complexes Mad and Tcf/β-catenin, respectively, indicating that they are mediated by changes in gene expression. The morphogenetic function of Wingless is in part mediated by one of its target genes, the transcription factor Vestigial. Wingless signaling promotes an enrichment of E-cadherin at the adherens junctions, and we show that E-cadherin is required to maintain apical-basal cell length. Dpp signaling controls the subcellular distribution of the activities of the small GTPase Rho1 and the regulatory light chain of non-muscle myosin II (MRLC). Alteration of Rho1 or MRLC activity has a profound effect on apical-basal cell length. Finally, we demonstrate that a decrease in Rho1 or MRLC activity rescues the shortening of cells with compromised Dpp signaling. Our results identify cell-autonomous roles for Dpp and Wingless signaling in promoting and maintaining the elongated columnar shape of wing disc cells. Furthermore, they suggest that Dpp and Wingless signaling control cell shape by regulating the actin-MyosinII/E-cadherin network. / Morphogenese in Tieren wird in hohem Maße von konzertierten Zellformveränderungen einzelner Zellen bewirkt. Es ist jedoch noch nicht hinreichend verstanden, wie Zellformveränderungen in sich entwickelnden Tieren reguliert und koordiniert werden. Hier zeigen wir, dass die zwei zueinander senkrecht stehenden Signalgradienten der Morphogene Dpp, eines TGF-β Homologs, und Wingless, eines Mitglieds der Wnt Familie, im sich entwickelnden Drosophila-Flügel Gewebe-Homöostase aufrechterhalten und Zellformveränderungen kontrollieren. Klone von Zellen, denen Dpp oder Wingless Signalaktivität fehlt, invaginieren von ihrer apikalen Seite her, verkürzen sich in apiko-basaler Richtung und extruieren im Folgenden auf der basalen Seite des Epithels, ohne es zu zerstören. Während der frühen Larvalentwicklung korreliert das Anschalten der Dpp und Wingless Signale mit der Zellformveränderung der Flügelscheibenzellen von kuboidal zu kolumnar. Gradienten in der apiko-basalen Länge von kolumnaren Zellen korrelieren während der späten Larvalentwicklung mit den Gradienten der Dpp und Wingless Signalaktivitäten. Zellen, die hohe Werte an Dpp und Wingless Signalen empfangen, sind am meisten elongiert und apikal konstringiert. Niedrige Werte von Dpp und Wingless Signalen korrelieren mit kürzerer und apikal weiterer Zellmorphologie. Dpp und Wingless Signale werden zellautonom gebraucht für die Aufrechterhaltung der elongierten Zellform von späten larvalen Flügelscheibenzellen. Die Überaktivierung dieser Signalwege führt zu vorzeitiger Zellverlängerung während der frühen Larvalentwicklung. Diese morphogenetischen Antworten auf Dpp und Wingless benötigen die Transkriptionsfaktor-Komplexe Mad beziehungsweise Tcf/β-catenin, was darauf hindeutet, dass sie durch Änderungen in der Genexpression vermittelt werden. Die morphogenetische Funktion von Wingless wird teilweise durch eines seiner Zielgene, Vestigial, vermittelt. Wingless Signale fördern die Anreicherung von E-cadherin an den Adherensverbindungen. Wir zeigen hier, dass E-cadherin gebraucht wird, um apiko-basale Zelllänge aufrechtzuerhalten. Dpp Signale kontrollieren die subzelluläre Verteilung der Aktivitäten der kleinen GTPase Rho1 und der regulatorischen leichten Kette von nicht-muskulärem Myosin II (MRLC). Eine Änderung in der Rho1 oder MRLC Aktivität hat weitreichende Auswirkungen auf die apiko-basale Zelllänge. Schließlich zeigen wir noch, dass eine Verringerung der Rho1 oder MRLC Aktivitäten die Zellverkürzung von Dpp-Signal kompromittierten Zellen rettet. Unsere Resultate identifizieren zellautonome Rollen für Dpp und Wingless Signale in der Förderung und Aufrechterhaltung der elongierten kolumnaren Zellform von Flügelimaginalscheibenzellen. Darüber hinaus suggerieren sie, dass Dpp und Wingless Signale die Zellform durch die Regulierung des Aktin-MyosinII/E-cadherin-Netzwerks kontrollieren.
|
7 |
Self-organized Growth in Developing EpitheliaMumcu, Peer 19 October 2011 (has links)
The development of a multicellular organism, such as a human or an animal, begins with the fertilization of an egg cell. Thereupon the organism grows by repeated cell divisions until the adult size is reached and growth stops. Although it is known that intrinsic mechanisms determine the final size of developing organs and organisms, the basic principles of growth control are still poorly understood. However, there is strong evidence that certain morphogens, which are a special class of signaling molecules, act as growth factors and play a key role in growth control.
In this work, growth control is studied from a mainly theoretical viewpoint. A discrete vertex model describing the organization of cells by a network of polygons is used, including a description of the cell cycle and a description of dynamical morphogen distributions. Self-organized growth is studied by introducing growth rules that govern cell divisions based on the local morphogen level. This discrete description is complemented by a continuum theory to gain further insight into the dynamics of self-organized growth processes.
The theoretical description is applied to the developing wing of the fruit fly Drosophila melanogaster. In the developing wing, which is an epithelium consisting of single-layered cell sheets, the morphogen Decapentaplegic (Dpp) acts as a key growth factor. Experimental data shows that the Dpp distribution is dynamic and adapts to the size of the developing wing. Two mechanisms that rely on a regulatory molecule species and lead to such a dynamic behaviour of the Dpp distribution are studied. Several growth rules are tested and the resulting growth behaviour is quantitatively compared to experimental data of the developing wing. A particular growth rule, that triggers a cell division when the local morphogen level has increased by a certain relative amount, is found to be consistent with experimental observations under normal and several perturbed conditions. It is shown that mechanical stresses that arise due to spatial growth inhomogeneities can have a stabilizing effect on the growth process.
|
8 |
Dynamics and mechanics of compartment boundaries in developing tissuesAliee, Maryam 02 July 2013 (has links) (PDF)
During development of tissues, cells collectively organize to form complex patterns and morphologies. A general feature of many developing epithelia is their distinct organization into cellular compartments of different cell lineages. The interfaces between these compartments, called compartment boundaries, maintain straight and sharp morphologies. The interfaces play key roles in tissue development and pattern formation. An important model system to study the morphology of compartment boundaries during development is the wing disc of the fruit fly. Two compartment boundaries exist in the fly wing disc, the anteroposterior (AP) boundary and the dorsoventral (DV) boundary. A crucial question is how compartment boundaries are shaped and remain stable during growth.
In this work, we discuss the dynamics and mechanisms of compartment boundaries in developing epithelia. We analyze the general features of interfacial phenomena in coarse- grained models of passive and active fluids. We introduce a continuum description of tissues with two cell types. This model allows us to study the propagation of interfaces due to the interplay of cell dynamics and tissue mechanics. We also use a vertex model to describe cellular compartments in growing epithelia. The vertex model accounts for cell mechanics and describes a 2D picture of tissues where the network of adherens junctions characterizes cell shapes. We use this model to study the general physical mechanisms by which compartment boundaries are shaped. We quantify the stresses in the cellular network and discuss how cell mechanics and growth influence the stress profile. With the help of the anisotropic stress profile near the interfaces we calculate the interfacial tension. We show that cell area pressure, cell proliferation rate, orientation of cell division, cell elongation created by external stress, and cell bond tension all have distinct effects on the morphology of interfaces during tissue growth. Furthermore, we investigate how much different mechanisms contribute to the effective interfacial tension.
We study the mechanisms shaping the DV boundary in wing imaginal disc at different stages during the development. We analyze the images of wing discs to quantify the roughness of the DV boundary and average cell elongation in its vicinity. We quantify increased cell bond tension along the boundary and analyze the role of localized reduction in cell proliferation on the morphology of the DV boundary. We use experimentally determined values for cell bond tension, cell elongation and bias in orientation of cell division in simulations of tissue growth in order to reproduce the main features of the time-evolution of the DV boundary shape.
|
9 |
Dynamics and mechanics of compartment boundaries in developing tissuesAliee, Maryam 22 April 2013 (has links)
During development of tissues, cells collectively organize to form complex patterns and morphologies. A general feature of many developing epithelia is their distinct organization into cellular compartments of different cell lineages. The interfaces between these compartments, called compartment boundaries, maintain straight and sharp morphologies. The interfaces play key roles in tissue development and pattern formation. An important model system to study the morphology of compartment boundaries during development is the wing disc of the fruit fly. Two compartment boundaries exist in the fly wing disc, the anteroposterior (AP) boundary and the dorsoventral (DV) boundary. A crucial question is how compartment boundaries are shaped and remain stable during growth.
In this work, we discuss the dynamics and mechanisms of compartment boundaries in developing epithelia. We analyze the general features of interfacial phenomena in coarse- grained models of passive and active fluids. We introduce a continuum description of tissues with two cell types. This model allows us to study the propagation of interfaces due to the interplay of cell dynamics and tissue mechanics. We also use a vertex model to describe cellular compartments in growing epithelia. The vertex model accounts for cell mechanics and describes a 2D picture of tissues where the network of adherens junctions characterizes cell shapes. We use this model to study the general physical mechanisms by which compartment boundaries are shaped. We quantify the stresses in the cellular network and discuss how cell mechanics and growth influence the stress profile. With the help of the anisotropic stress profile near the interfaces we calculate the interfacial tension. We show that cell area pressure, cell proliferation rate, orientation of cell division, cell elongation created by external stress, and cell bond tension all have distinct effects on the morphology of interfaces during tissue growth. Furthermore, we investigate how much different mechanisms contribute to the effective interfacial tension.
We study the mechanisms shaping the DV boundary in wing imaginal disc at different stages during the development. We analyze the images of wing discs to quantify the roughness of the DV boundary and average cell elongation in its vicinity. We quantify increased cell bond tension along the boundary and analyze the role of localized reduction in cell proliferation on the morphology of the DV boundary. We use experimentally determined values for cell bond tension, cell elongation and bias in orientation of cell division in simulations of tissue growth in order to reproduce the main features of the time-evolution of the DV boundary shape.
|
Page generated in 0.1352 seconds