• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 26
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Security Mechanisms for Mobile Ad Hoc and Wireless Sensor Networks

CHENG, YI 19 September 2008 (has links)
No description available.
22

Link Stability Analysis of Wireless Sensor Networks Over the Ocean Surface

Shahanaghi, Alireza 03 September 2021 (has links)
Ocean-surface Wireless Sensor Networks (WSN) are essential in various thalassic applications, such as maritime communication, ocean monitoring, seawater examination, pollution detection, etc. Formed by simple structured sensor nodes, ocean-surface WSN can improve the data transmission rate, enhance the monitoring resolution, expand the geographical coverage, extend the observation period, and lower the cost compared to the vessel-based monitoring approaches. Despite the importance and the broad applications of ocean-surface WSNs, little is known about the stability of the wireless links among the sensors. Especially, research suffers from the lack of an accurate model that describes the environmnetal effects, including the ocean surface movements and the wind speed on the link stability. The inappropriate understanding of link stability can result in network protocols that are not robust to environmental interruptions. Such a shortcoming decreases the network reliability and degrades the accuracy of the network planning. To compensate for this shortcoming, in this dissertation, we provide a thorough analysis on the stability of the wireless links over the ocean. In particular, we investigate and capture the effects of ocean waves on the link stability through the following steps. First, we use the linear wave theory and obtain a novel stochastic model of Line-of-Sight (LoS) links over the ocean based on the realistic behavior of ocean waves. Second, we present and prove an important theorem on the level-crossing of Wide Sense Stationary (WSS) random processes, and combine that with our stochastic model of LoS links to study two important indicators of link stability, i.e., the blockage probability and the blockage and connectivity periods. The former indicates the probability that a LoS link is blocked by the ocean waves while the latter determines the duration of on/off periods of the LoS links over the ocean. The aforementioned stability parameters directly affect different stages of network design, such as choosing the antenna height, planning the sensors' deployment distances, determining the packet length, designing the retransmission and scheduling strategies in the Medium Access Control (MAC) protocols and transport layer protocols, selecting the fragmentation threshold in Internet Protocol (IP), etc., which will be discussed in the respective chapters. In the last part of our dissertation, we investigate the problem of linear prediction of ocean waves, which has special importance in the design of ocean-surface WSNs. In this regard, we first introduce a low-complexity metric for effectiveness of k-step-ahead linear prediction, which we refer to as efficiency curve. The significance of efficiency curve becomes evident when we decide upon the number of previous samples in the linear prediction model, and determine the extent to which the predictor forecasts the future. After efficiency curve, we formulate an adaptive Wiener filter to predict the ocean waves and adapt the prediction model according to the environmental changes. / Doctor of Philosophy / Covering almost three quarters of the earth and supplying half of its oxygen, oceans are vital to the support of life on our planet. It is important to continuously monitor different parts of the ocean environment for tracking climate changes, detecting pollution, etc. However, the existing monitoring approaches have serious weaknesses, which prevent us from constantly monitoring the state of ocean, and drastically limit the geographical coverage. For instance, the traditional ocean monitoring system using oceanographic research vessels is time-consuming and expensive. Besides, it has low resolution in time and space, which poses serious challenges to oceanographers by providing under-sampled records of the ocean. To compensate for these defects, one of the promising alternatives is to employ Wireless Sensor Networks (WSN) which has many advantages, such as real-time access to data for a longer period of time and a larger geographical coverage of the ocean, higher resolution of monitoring, faster processing of collected data and instantaneous transmission to onshore monitoring centers. With the benefit of simple structure sensor nodes, ocean-surface WSNs can also decrease the cost by at least one order of magnitude compared to the conventional approaches. Despite the advantages that ocean surface WSN have over traditional ocean monitoring methods, ocean surface WSN research suffers from the lack of an accurate model that describes the stability of wireless links among sensor nodes. While some of the existing literature has developed accurate models of the electromagnetic wave propagation over the ocean surface, they have failed to consider the environmental effects, such as ocean waves on the stability of the links. To fill this void, in this dissertation, we investigate ocean surface waves' effects on the Line-of-Sight (LoS) link between the sensors in an ocean-surface WSN. Specifically, we derive the blockage probability, and the blockage and connectivity periods of LoS links between a transmitter and receiver pair due to wave movements. In addition to the link stability analysis, we dedicate the last part of this dissertation to look into the problem of linear prediction of ocean waves, which has special importance in the design process of ocean-surface WSNs. In this regard, we present a low-complexity metric for effectiveness of k-step-ahead linear prediction, and formulate an adaptive Wiener filter to predict the ocean waves and adapt the prediction model according to the environmental changes.
23

A resource-aware embedded commucation system for highly dynamic networks / Un système de communication embarqué conscient des ressources pour des réseaux hautement dynamiques

Diao, Xunxing 27 May 2011 (has links)
Chaque année en Europe, 1.300.000 accidents de la route ont comme conséquence 1.700.000 blessés. Le coût financier d’accidents de la route est évalué à 160 milliards d’euros (approximativement le même coût aux Etats-Unis). VANET (Vehicular Ad-hoc NETwork) est une des technologies clés qui peut permettre de réduire d’une façon significative le nombre d’accidents de la route (e.g. message d’urgence signalant la présence d’un obstacle ou d’un véhicule en cas de brouillard). En plus de l’amélioration de la sécurité et du confort des conducteurs et des passagers, VANET peut contribuer à beaucoup d’applications potentielles telles que la prévision et la détection d’embouteillages, la gestion d’infrastructure de système de transport urbain (e.g. système de transport intelligent multimodal) etc. Dans cette thèse, je présenterai un système embarqué dédié à la communication inter-véhicule particulièrement pour les applications sécuritaires de passagers et de conducteurs. Nos efforts de recherche et de développement sont centrés sur deux principaux objectifs : minimiser le temps de latence intra-noeud et le délai de communication inter-véhicule en prenant en compte le changement dynamique du VANET. De ce fait pour atteindre ces objectifs, des nouvelles approches (e.g. inter-couche ‘Cross-layering’) ont été explorées pour respecter les contraintes de ressource (QoS, mémoire, CPU et énergie de la communication inter-véhicule) d’un système embarqué à faible coût. Le système de communication embarqué proposé comporte deux composants logiciels principaux : un protocole de communication dénommé CIVIC (Communication Inter Véhicule Intelligente et Coopérative) et un système d’exploitation temps réel appelé HEROS (Hybrid Event-driven and Real-time multitasking Operating System). CIVIC est un protocole de communication géographique à faible consommation énergétique et à faible temps de latence (délai de communication). HEROS gère contextuellement l’ensemble du système (matériel et logiciel) en minimisant le temps de latence et la consommation des ressources (CPU et mémoire). En outre, le protocole de communication CIVIC est équipé d’un système de localisation LCD-GPS (Low Cost Differential GPS). Pour tester et valider les différentes techniques et théories, la plateforme matérielle LiveNode (LImos Versatile Embedded wireless sensor NODE) a été utilisée. En effet, la plateforme LiveNode permet de développer et de prototyper rapidement des applications dans différents domaines. Le protocole de communication CIVIC est basé sur la technique de ‘broadcast’ à un saut ; de ce fait il est indépendant de la spécificité du réseau. Pour les expérimentations, seule la norme d’IEEE 802.15.4 (ZigBee) a été choisie comme médium d’accès sans fil. Il est à noter que le médium d’accès sans fil ZigBee a été adopté comme le médium standard pour les réseaux de capteurs sans fil (RCSFs) et le standard 6LoWPAN ; car il est peu coûteux et peu gourmand en énergie. Bien que le protocole de communication à l’origine soit conçu pour répondre aux exigences de VANET, ses domaines d’application ne sont pas limités à VANET. Par exemple il a été utilisé dans différents projets tels que MOBI+ (système de transport urbain intelligent) et NeT-ADDED (projet européen FP6 : agriculture de précision). Les VANETs et les RCSFs sont les réseaux fortement dynamiques, mais les causes de changement topologique de réseau sont différentes : dans le réseau VANET, il est dû à la mobilité des véhicules, et dans le RCSF, il est dû aux pannes des noeuds sans fil. Il est à noter que le VANET et le RCSF sont généralement considérés comme un sous-ensemble du réseau MANET (réseau ad-hoc mobile). Cependant, ils sont réellement tout à fait différents du MANET classique, et leurs similitudes et différences seront expliquées en détail dans la thèse. La contribution principale de mes travaux est le protocole CIVIC, qui échange des messages en basant sur l’information géographique des noeuds (position). (...) / Each year in Europe, 1,300,000 vehicle accidents result in 1,700,000 personal injuries. The financial cost of vehicle accidents is evaluated at 160 billion Euros (approximately the same cost in the USA). VANET (Vehicular Ad-Hoc NETwork) is a key technology that can enable hazard alarming applications to reduce the accident number. In addition to improve the safety for drivers and passengers, VANET can contribute to many potential applications such as detecting and predicting traffic jams, auto-optimizing the traffic flow, and helping disabled passengers to access public transports.This thesis will present an embedded communication system dedicated to VANET especially for the safety-related applications. Our design mainly tries to achieve two requirements: as one can imagine, the embedded communication system for VANET requires extra effort to deal with the highly dynamic network topology caused by moving vehicles, thus to shorten the intra-node system latency and inter-node network delay is essential requirement for such embedded communication system. Besides, a fundamental requirement for any practical embedded system is resource-awareness. Although the embedded communication system on vehicles may gain better hardware supports, the characteristics of embedded hardware still have to cope with resource constraints in terms of QoS, memory, CPU and energy. The embedded communication system involves two major software components: a routing protocol called CIVIC (Communication Inter Véhicule Intelligente et Coopérative) and an embedded operating system called HEROS (Hybrid Event-driven and Real-time multitasking Operating System). The former is a quick reaction and low resource consumption geographic protocol for inter-vehicle message transmissions; and the latter controls the whole system and assures intra-node resource awareness. In addition, the system can use a localization software solution called LCD-GPS (Low Cost Differential GPS) to improve the accuracy of locations. The hardware platform is LiveNode (LImos Versatile Embedded wireless sensor NODE), which is a versatile wireless sensor node enabling to implement rapidly a prototype for different application domains. The communication system is based on the one-hop broadcast, thus it does not have a strict limitation on network specification. For the experiments only, the IEEE 802.15.4 standard is chosen as the underlying wireless access medium. The standard is well known as a low-power consumption standard requiring low-cost devices. Notice that the IEEE 802.15.4 standard is also the wireless access medium of 6LoWPAN. Although the embedded communication system is originally designed to meet the requirements of VANET, but its application domains are not limited to VANET. For example, another network which can use the embedded communication system is WSN (Wireless Sensor Network). CIVIC was used to implement different real-world projects such MOBI+ (intelligent urban transportation system) and EU-FP6 NeT-ADDED (precision agriculture). Both VANET and WSN are highly dynamic networks, but the causes of changing network topology are different: the former is because of the high-mobility feature of vehicles, and the latter is because of the fault of wireless sensors. Note that, although VANET and WSN are both commonly considered as the subset of MANET (Mobile Ad-hoc NETwork), they are actually quite different from the classical MANET, and the similarities and differences will be further explained in the thesis. The major contribution of my works relates to the CIVIC protocol, which routes messages based on the geographic information. The related works of the thesis will focus on the geographic routing techniques, problems and solutions, but other related techniques will also be addressed. Note that, although some related projects were investigated but their implementation and experiment aspects were not detailed. (...)
24

Relay Selection for Geographical Forwarding in Sleep-Wake Cycling Wireless Sensor Networks

Naveen, K P January 2013 (has links) (PDF)
Advances in wireless communication and microelectronics have led to the development of low-power compact sensor nodes (popularly called motes) that are capable of sensing, computing, and communication. A large number of these nodes can be deployed over some area of interest to form a multi-hop network, commonly referred to as a wireless sensor network (WSN). Typical applications of WSNs include, environment and process monitoring in industrial installations, forest fire detection, structural health monitoring, etc. In such applications where the variables to be measured are slowly varying, or the events to be monitored are rare, continuous sensing is unnecessary. Instead, the nodes, in order to conserve their battery power, can sleep-wake cycle whereby each node is allowed to independently alternate between an ON state and a low power OFF state. Sleep-wake cycling, while increasing the network lifetime, renders the network disconnected a large fraction of the time; however, connectivity can be established over time by transporting packets in a store-and-forward manner, whereby packets are held by a forwarding node until a suitable node wakes up in its neighborhood that can serve to forward the packet towards the destination. We are concerned with sleep-wake cycling multi-hop wireless networks whose main task is to carry sporadic alarms packets from sensing nodes to a sink node. Our objective is to design simple local-information based routing solutions for such networks. With this in mind, we propose a relay selection problem that arises at a forwarding node (which is currently holding the alarm packet) while choosing a next-hop relay node. The forwarder, as and when the relays wake-up, evaluating the goodness of a relay based on a “reward” metric (e.g., a function of the relay’s progress towards sink, and the power required to get the packet across), has to decide whether to forward to this relay or to wait for future ones (i.e., to stop or continue). The forwarder’s objective is to choose a relay so as to minimize a combination of the average delay incurred and the average reward achieved. A basic version of our relay selection problem is equivalent to the basic asset selling problem studied in the operations research literature. After reviewing the solution to the basic problem we will proceed to study a model with full information, referred to as the completely observable (CO) model, where the number of relays is exactly known to the forwarder. Formulating the problem as a Markov decision process (MDP) we will characterize the solution to the CO model in terms of recursively-computable threshold functions. Next, we consider the partially observable (PO) model where only a belief (probability mass function) on the number of relays is known. Hence, the PO model falls within the realm of partially observable MDPs. After incorporating our model into this framework we will characterize the solution in terms of stopping sets, which is the set of all belief states where it is optimal to stop. Our main contribution here is to obtain inner and outer bounds for the stopping sets. We next propose a variant where the relays, upon waking up, do not reveal their rewards immediately, but instead the forwarder can choose to probe the relay to know its reward, incurring a probing cost. Thus, to the existing set of stop and continue actions, we have added a new probe action. This model is motivated by the efforts required to learn the channel gains (by probing) in a wireless system. A key result we prove here is that the solution is characterized in terms of stage independent thresholds. Finally, we study a model comprising two forwarders which are competing against each other to choose a next-hop relay (one for each). Here, a relay is allowed to offer possibly different reward to each forwarder. We will first consider a complete information case where the reward pair of a relay is known to both the forwarders. Using stochastic game theory we will characterize the solution to this model in terms of Nash equilibrium policy pairs (NEPPs). We obtain results illustrating the structure of NEPPs. Next, we study a partial information model where each forwarder gets to observe only its reward value. Towards obtaining the solution for this model, we will first formulate a Bayesian game which is effectively played by both the forwarders at each stage. Next, for this Bayesian game we prove the existence of Nash equilibrium strategies within the class of threshold strategies. This result will enable us to construct NEPPs for the partial information model. Although our primary contribution from the thesis is the theoretical study of the above mentioned variants of the basic relay selection model, we have also conducted extensive simulations to study the end-to-end performance obtained by applying the solution to these models at each hop en-route to the sink in a sleep-wake cycling WSN.
25

Design and Development of a Passive Infra-Red-Based Sensor Platform for Outdoor Deployment

Upadrashta, Raviteja January 2017 (has links) (PDF)
This thesis presents the development of a Sensor Tower Platform (STP) comprised of an array of Passive Infra-Red (PIR) sensors along with a classification algorithm that enables the STP to distinguish between human intrusion, animal intrusion and clutter arising from wind-blown vegetative movement in an outdoor environment. The research was motivated by the aim of exploring the potential use of wireless sensor networks (WSNs) as an early-warning system to help mitigate human-wildlife conflicts occurring at the edge of a forest. While PIR sensors are in commonplace use in indoor settings, their use in an outdoor environment is hampered by the fact that they are prone to false alarms arising from wind-blown vegetation. Every PIR sensor is made up of one or more pairs of pyroelectric pixels arranged in a plane, and the orientation of interest in this thesis is one in which this plane is a vertical plane, i.e., a plane perpendicular to the ground plane. The intersection of the Field Of View (FOV) of the PIR sensor with a second vertical plane that lies within the FOV of the PIR sensor, is called the virtual pixel array (VPA). The structure of the VPA corresponding to the plane along which intruder motion takes place determines the form of the signal generated by the PIR sensor. The STP developed in this thesis employs an array of PIR sensors designed so as to result in a VPA that makes it easier to discriminate between human and animal intrusion while keeping to a small level false alarms arising from vegetative motion. The design was carried out in iterative fashion, with each successive iteration separated by a lengthy testing phase. There were a total of 5 design iterations spanning a total period of 14 months. Given the inherent challenges involved in gathering data corresponding to animal intrusion, the testing of the SP was carried out both using real-world data and through simulation. Simulation was carried out by developing a tool that employed animation software to simulate intruder and animal motion as well as some limited models of wind-blown vegetation. More specifically, the simulation tool employed 3-dimensional models of intruder and shrub motion that were developed using the popular animation software Blender. The simulated output signal of the PIR sensor was then generated by calculating the area of the 3-dimensional intruder when projected onto the VPA of the STP. An algorithm for efficiently calculating this to a good degree of approximation was implemented in Open Graphics Library (OpenGL). The simulation tool was useful both for evaluating various competing design alternatives as well as for developing an intuition for the kind of signals the SP would generate without the need for time-consuming and challenging animal-motion data collection. Real-world data corresponding to human motion was gathered on the campus of the Indian Institute of Science (IISc), while animal data was recorded at a dog-trainer facility in Kengeri as well as the Bannerghatta Biological Park, both located in the outskirts of Bengaluru. The array of PIR sensors was designed so as to result in a VPA that had good spatial resolution. The spatial resolution capabilities of the STP permitted distinguishing between human and animal motion with good accuracy based on low-complexity, signal-energy computations. Rejecting false alarms arising from vegetative movement proved to be more challenging. While the inherent spatial resolution of the STP was very helpful, an alternative approach turned out to have much higher accuracy, although it is computationally more intensive. Under this approach, the intruder signal, either human or animal, was modelled as a chirp waveform. When the intruder moves along a circular arc surrounding the STP, the resulting signal is periodic with constant frequency. However, when the intruder moves along a more likely straight-line path, the resultant signal has a strong chirp component. Clutter signals arising from vegetative motion does not exhibit this chirp behavior and an algorithm that exploited this difference turned in a classification accuracy in excess of 97%.
26

PLANT LEVEL IIOT BASED ENERGY MANAGEMENT FRAMEWORK

Liya Elizabeth Koshy (14700307) 31 May 2023 (has links)
<p><strong>The Energy Monitoring Framework</strong>, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology.</p> <p>The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely.</p> <p>The main objectives of the project include the following:</p> <ul> <li>Set up a wireless network using sensors and smart implants with a base station/ controller.</li> <li>Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency.</li> <li>Set up a generalized interface to collect and process the sensor data values and store the data in a database.</li> <li>Design and develop a generic database compatible with various companies irrespective of the type and size.</li> <li> Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment.</li> </ul> <p>The General Structure of the project constitutes the following components:</p> <ul> <li>A wireless sensor network with a base station.</li> <li>An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators.</li> <li>A cloud that hosts a database and an API to collect and store information.</li> <li>A web application hosted in the cloud to provide an interactive platform for users to analyze the data.</li> </ul> <p>The project was demonstrated in:</p> <ul> <li>Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/).</li> <li>Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/).</li> <li>A company in Indiana.</li> </ul> <p>The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.</p> <p><br></p>

Page generated in 0.0914 seconds