• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 12
  • 11
  • 9
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Antieigenvalues of Wishart Matrices

Calderon, Simon January 2020 (has links)
In this thesis we derive the distribution for the first antieigenvalue for a random matrix with distribution W ∼ Wp(n, Ip) for p = 2 and p = 3. For p = 2 we present a proof that the first antieigenvalue has distribution β((n−1)/2, 1). For p = 3 we prove that the probability density function can be expressed using a sum of hypergeometric functions. Besides the main objective, the thesis seeks to introduce the theory of multivariate statistics and antieigenvalues.
12

Numerical Computation of Wishart Eigenvalue Distributions for Multistatic Radar Detection

January 2019 (has links)
abstract: Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue $\lambda_1$ of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of $\lambda_1$ are known under both hypotheses, numerically calculating values of these distribution functions presents difficulties in cases where the dimension of the data vectors is large. This dissertation presents tractable methods for computing the distribution of $\lambda_1$ under both the null and alternative hypotheses through a technique of expanding known expressions for the distribution of $\lambda_1$ as inner products of orthogonal polynomials. These newly presented expressions for the distribution allow for computation of detection thresholds and receiver operating characteristic curves to arbitrary precision in floating point arithmetic. This represents a significant advancement over the state of the art in a problem that could previously only be addressed by Monte Carlo methods. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
13

Random Matrix Theory with Applications in Statistics and Finance

Saad, Nadia Abdel Samie Basyouni Kotb 22 January 2013 (has links)
This thesis investigates a technique to estimate the risk of the mean-variance (MV) portfolio optimization problem. We call this technique the Scaling technique. It provides a better estimator of the risk of the MV optimal portfolio. We obtain this result for a general estimator of the covariance matrix of the returns which includes the correlated sampling case as well as the independent sampling case and the exponentially weighted moving average case. This gave rise to the paper, [CMcS]. Our result concerning the Scaling technique relies on the moments of the inverse of compound Wishart matrices. This is an open problem in the theory of random matrices. We actually tackle a much more general setup, where we consider any random matrix provided that its distribution has an appropriate invariance property (orthogonal or unitary) under an appropriate action (by conjugation, or by a left-right action). Our approach is based on Weingarten calculus. As an interesting byproduct of our study - and as a preliminary to the solution of our problem of computing the moments of the inverse of a compound Wishart random matrix, we obtain explicit moment formulas for the pseudo-inverse of Ginibre random matrices. These results are also given in the paper, [CMS]. Using the moments of the inverse of compound Wishart matrices, we obtain asymptotically unbiased estimators of the risk and the weights of the MV portfolio. Finally, we have some numerical results which are part of our future work.
14

Random Matrix Theory with Applications in Statistics and Finance

Saad, Nadia Abdel Samie Basyouni Kotb 22 January 2013 (has links)
This thesis investigates a technique to estimate the risk of the mean-variance (MV) portfolio optimization problem. We call this technique the Scaling technique. It provides a better estimator of the risk of the MV optimal portfolio. We obtain this result for a general estimator of the covariance matrix of the returns which includes the correlated sampling case as well as the independent sampling case and the exponentially weighted moving average case. This gave rise to the paper, [CMcS]. Our result concerning the Scaling technique relies on the moments of the inverse of compound Wishart matrices. This is an open problem in the theory of random matrices. We actually tackle a much more general setup, where we consider any random matrix provided that its distribution has an appropriate invariance property (orthogonal or unitary) under an appropriate action (by conjugation, or by a left-right action). Our approach is based on Weingarten calculus. As an interesting byproduct of our study - and as a preliminary to the solution of our problem of computing the moments of the inverse of a compound Wishart random matrix, we obtain explicit moment formulas for the pseudo-inverse of Ginibre random matrices. These results are also given in the paper, [CMS]. Using the moments of the inverse of compound Wishart matrices, we obtain asymptotically unbiased estimators of the risk and the weights of the MV portfolio. Finally, we have some numerical results which are part of our future work.
15

Lois de Wishart sur les cônes convexes / Wishart laws on convex cones

Mamane, Salha 20 March 2017 (has links)
En analyse multivariée de données de grande dimension, les lois de Wishart définies dans le contexte des modèles graphiques revêtent une grande importance car elles procurent parcimonie et modularité. Dans le contexte des modèles graphiques Gaussiens régis par un graphe G, les lois de Wishart peuvent être définies sur deux restrictions alternatives du cône des matrices symétriques définies positives : le cône PG des matrices symétriques définies positives x satisfaisant xij=0, pour tous sommets i et j non adjacents, et son cône dual QG. Dans cette thèse, nous proposons une construction harmonieuse de familles exponentielles de lois de Wishart sur les cônes PG et QG. Elle se focalise sur les modèles graphiques d'interactions des plus proches voisins qui présentent l'avantage d'être relativement simples tout en incluant des exemples de tous les cas particuliers intéressants: le cas univarié, un cas d'un cône symétrique, un cas d'un cône homogène non symétrique, et une infinité de cas de cônes non-homogènes. Notre méthode, simple, se fonde sur l'analyse sur les cônes convexes. Les lois de Wishart sur QAn sont définies à travers la fonction gamma sur QAn et les lois de Wishart sur PAn sont définies comme la famille de Diaconis- Ylvisaker conjuguée. Ensuite, les méthodes développées sont utilisées pour résoudre la conjecture de Letac- Massam sur l'ensemble des paramètres de la loi de Wishart sur QAn. Cette thèse étudie aussi les sousmodèles, paramétrés par un segment dans M, d'une famille exponentielle paramétrée par le domaine des moyennes M. / In the framework of Gaussian graphical models governed by a graph G, Wishart distributions can be defined on two alternative restrictions of the cone of symmetric positive definite matrices: the cone PG of symmetric positive definite matrices x satisfying xij=0 for all non-adjacent vertices i and j and its dual cone QG. In this thesis, we provide a harmonious construction of Wishart exponential families in graphical models. Our simple method is based on analysis on convex cones. The focus is on nearest neighbours interactions graphical models, governed by a graph An, which have the advantage of being relatively simple while including all particular cases of interest such as the univariate case, a symmetric cone case, a nonsymmetric homogeneous cone case and an infinite number of non-homogeneous cone cases. The Wishart distributions on QAn are constructed as the exponential family generated from the gamma function on QAn. The Wishart distributions on PAn are then constructed as the Diaconis- Ylvisaker conjugate family for the exponential family of Wishart distributions on QAn. The developed methods are then used to solve the Letac-Massam Conjecture on the set of parameters of type I Wishart distributions on QAn. Finally, we introduce and study exponential families of distributions parametrized by a segment of means with an emphasis on their Fisher information. The focus in on distributions with matrix parameters. The particular cases of Gaussian and Wishart exponential families are further examined.
16

Random Matrix Theory with Applications in Statistics and Finance

Saad, Nadia Abdel Samie Basyouni Kotb January 2013 (has links)
This thesis investigates a technique to estimate the risk of the mean-variance (MV) portfolio optimization problem. We call this technique the Scaling technique. It provides a better estimator of the risk of the MV optimal portfolio. We obtain this result for a general estimator of the covariance matrix of the returns which includes the correlated sampling case as well as the independent sampling case and the exponentially weighted moving average case. This gave rise to the paper, [CMcS]. Our result concerning the Scaling technique relies on the moments of the inverse of compound Wishart matrices. This is an open problem in the theory of random matrices. We actually tackle a much more general setup, where we consider any random matrix provided that its distribution has an appropriate invariance property (orthogonal or unitary) under an appropriate action (by conjugation, or by a left-right action). Our approach is based on Weingarten calculus. As an interesting byproduct of our study - and as a preliminary to the solution of our problem of computing the moments of the inverse of a compound Wishart random matrix, we obtain explicit moment formulas for the pseudo-inverse of Ginibre random matrices. These results are also given in the paper, [CMS]. Using the moments of the inverse of compound Wishart matrices, we obtain asymptotically unbiased estimators of the risk and the weights of the MV portfolio. Finally, we have some numerical results which are part of our future work.
17

Risques de taux et de longévité : Modélisation dynamique et Applications aux produits dérivés et à l'assurance-vie

Bensusan, Harry 22 December 2010 (has links) (PDF)
Cette thèse se divise en trois parties. La première partie est constituée des chapitres 2 et 3 dans laquelle nous considérons des modèles qui décrivent l'évolution d'un sous-jacent dans le monde des actions ainsi que l'évolution des taux d'intérêt. Ces modèles, qui utilisent les processus de Wishart, appartiennent à la classe affine et généralisent les modèles de Heston multi-dimensionnels. Nous étudions les propriétés intrinsèques de ces modèles et nous nous intéressons à l'évaluation des options vanilles. Après avoir rappelé certaines méthodes d'évaluation, nous introduisons des méthodes d'approximation fournissant des formules fermées du smile asymptotique. Ces méthodes facilitent la procédure de calibration et permettent une analyse intéressante des paramètres. La deuxième partie, du chapitre 4 au chapitre 6, étudie les risques de mortalité et de longévité. Nous rappelons tout d'abord les concepts généraux du risque de longévité et un ensemble de problématiques sous-jacentes à ce risque. Nous présentons ensuite un modèle de mortalité individuelle qui tient compte de l'âge et d'autres caractéristiques de l'individu qui sont explicatives de mortalité. Nous calibrons le modèle de mortalité et nous analysons l'influence des certaines caractéristiques individuelles. Enfin, nous introduisons un modèle microscopique de dynamique de population qui permet de modéliser l'évolution dans le temps d'une population structurée par âge et par traits. Chaque individu évolue dans le temps et est susceptible de donner naissance à un enfant, de changer de caractéristiques et de décéder. Ce modèle tient compte de l'évolution, éventuellement stochastique, des taux démographiques individuels dans le temps. Nous décrivons aussi un lien micro/macro qui fournit à ce modèle microscopique de bonnes propriétés macroscopiques. La troisième partie, concernant les chapitres 7 et 8, s'intéresse aux applications des modélisations précédentes. La première application est une application démographique puisque le modèle microscopique de dynamique de population permet d'effectuer des projections démographiques de la population française. Nous mettons aussi en place une étude démographique du problème des retraites en analysant les solutions d'une politique d'immigration et d'une réforme sur l'âge de départ à la retraite. La deuxième application concerne l'étude des produits d'assurance-vie associant les risques de longévité et de taux d'intérêt qui ont été étudiés en détails dans les deux premières parties de la thèse. Nous nous intéressons tout d'abord à l'étude du risque de base qui est généré par l'hétérogénéité des portefeuilles de rentes. De plus, nous introduisons la Life Nominal Chooser Swaption (LNCS) qui est un produit de transfert de risque des produits d'assurance-vie : ce produit a une structure très intéressante et permet à une assurance détenant un portefeuille de rente de transférer intégralement son risque de taux d'intérêt à une banque.
18

Extrema de processus stochastiques. Propriétés asymptotiques de tests d'hypothèses

Mercadier, Cécile 01 July 2005 (has links) (PDF)
Cette thèse se divise en deux parties.<br />La première partie s'inscrit dans la lignée des résultats composant la théorie des valeurs extrêmes. Ces analyses se destinent au calcul de probabilité des événements rares. Le premier travail donne l'ordre asymptotique du maximum d'un processus gaussien, non-stationnaire à variance constante. Le second travail caractérise la loi du maximum en temps fini, et donc pour des niveaux de tous ordres. La procédure d'estimation a d'ailleurs donné naissance à une boîte à outils Matlab appelée MAGP. La seconde partie regroupe deux applications statistiques. D'une part, la distribution et la puissance du test, basé sur le maximum de vraisemblance, sont étudiées pour des modèles de mélange. D'autre part, la construction d'un test de sphéricité est envisagée à l'aide des valeurs propres extrêmes des matrices de covariance.
19

Finite Rank Perturbations of Random Matrices and their Continuum Limits

Bloemendal, Alexander 05 January 2012 (has links)
We study Gaussian sample covariance matrices with population covariance a bounded-rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive perturbations. The top eigenvalues are known to exhibit a phase transition in the large size limit: with weak perturbations they follow Tracy-Widom statistics as in the unperturbed case, while above a threshold there are outliers with independent Gaussian fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex case and conjectured a similar picture in the real case, the latter of most relevance to high-dimensional data analysis. Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit near the phase transition. Our starting point is the work of Rámirez, Rider and Virág (2006) on the general beta random matrix soft edge. For rank one perturbations, a modified tridiagonal form converges to the known random Schrödinger operator on the half-line but with a boundary condition that depends on the perturbation. For general finite-rank perturbations we develop a new band form; it converges to a limiting operator with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. Their laws are also characterized in terms of a diffusion related to Dyson's Brownian motion and in terms of a linear parabolic PDE. We offer a related heuristic for the supercritical behaviour and rigorously treat the supercritical asymptotics of the ground state of the limiting operator. In a further development, we use the PDE to make the first explicit connection between a general beta characterization and the celebrated Painlevé representations of Tracy and Widom (1993, 1996). In particular, for beta = 2,4 we give novel proofs of the latter. Finally, we report briefly on evidence suggesting that the PDE provides a stable, even efficient method for numerical evaluation of the Tracy-Widom distributions, their general beta analogues and the deformations discussed and introduced here. This thesis is based in part on work to be published jointly with Bálint Virág.
20

Finite Rank Perturbations of Random Matrices and their Continuum Limits

Bloemendal, Alexander 05 January 2012 (has links)
We study Gaussian sample covariance matrices with population covariance a bounded-rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive perturbations. The top eigenvalues are known to exhibit a phase transition in the large size limit: with weak perturbations they follow Tracy-Widom statistics as in the unperturbed case, while above a threshold there are outliers with independent Gaussian fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex case and conjectured a similar picture in the real case, the latter of most relevance to high-dimensional data analysis. Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit near the phase transition. Our starting point is the work of Rámirez, Rider and Virág (2006) on the general beta random matrix soft edge. For rank one perturbations, a modified tridiagonal form converges to the known random Schrödinger operator on the half-line but with a boundary condition that depends on the perturbation. For general finite-rank perturbations we develop a new band form; it converges to a limiting operator with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. Their laws are also characterized in terms of a diffusion related to Dyson's Brownian motion and in terms of a linear parabolic PDE. We offer a related heuristic for the supercritical behaviour and rigorously treat the supercritical asymptotics of the ground state of the limiting operator. In a further development, we use the PDE to make the first explicit connection between a general beta characterization and the celebrated Painlevé representations of Tracy and Widom (1993, 1996). In particular, for beta = 2,4 we give novel proofs of the latter. Finally, we report briefly on evidence suggesting that the PDE provides a stable, even efficient method for numerical evaluation of the Tracy-Widom distributions, their general beta analogues and the deformations discussed and introduced here. This thesis is based in part on work to be published jointly with Bálint Virág.

Page generated in 0.0286 seconds