• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 63
  • 56
  • 14
  • 10
  • 9
  • 8
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 436
  • 146
  • 107
  • 83
  • 74
  • 64
  • 59
  • 51
  • 49
  • 45
  • 39
  • 38
  • 37
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

The Efficacy and Design of Coastal Protection Using Large Woody Debris

Wilson, Jessica 16 December 2020 (has links)
Those who frequent the coastline may be accustomed to seeing driftwood washed onshore, some of it having seemingly found a home there for many years, others having been freshly deposited during the last set of storms; However, if a passerby were to take a closer look at the driftwood on the coastline, they may notice that some of these logs – also known as Large Woody Debris (LWD) – are anchored in place, a practice which is generally used for the purpose of stabilizing the shoreline or reducing wave-induced flooding. Records of existing anchored LWD project sites date back to 1997 and anecdotal evidence suggests that the technique has been used since the mid-1900’s in coastal British Columbia (BC), Canada, and Washington State, USA. Now, with an increased demand for natural and nature-based solutions, the technique is again gaining popularity. Despite this, the design of anchored LWD has largely been based on anecdotal observations and experience, as well as a continuity of design practices from the river engineering field. To date, there is no known peer-reviewed literature on the design or efficacy of LWD protection systems in a coastal environment. In 2019, the “Efficacy and Design of Coastal Protection using Large Woody Debris” research project was initiated to determine if LWD are effective at stabilizing the shoreline under wave action, if they are effective at reducing wave run-up, and if they are durable enough to meet engineering requirements for shore protection. In addition, the project aimed to determine the optimum configuration of LWD for design purposes. To meet these objectives, this study included the following work: (1) field studies of existing LWD installations, (2) experimental modeling of beach morphology with and without LWD structures, (3) experimental modeling of wave run-up with and without LWD structures, and (4) development of preliminary design guidance. The first phase of the project included field investigations at 15 existing anchored LWD sites in coastal BC and Washington State. Site characteristics, design techniques, and durability indicators were examined and correlated to a new design life parameter: ‘Effective Life’. Six primary installation techniques were observed: Single, Multiple, Benched, Stacked, Matrix, and Groyne. Observed durability and/or performance issues included: missing LWD, erosion, arson, wood decay, and anchor corrosion/damage. The Effective Life of anchored LWD was found to be strongly correlated to the tidal range and the upper beach slope for all installation types, and the LWD placement elevation relative to the beach crest elevation for single, shore-parallel structures. The many noted durability issues and ineffectiveness as mitigating erosion indicates that existing design methods for anchored LWD have not generally been effective at providing coastal protection and meeting engineering design life requirements. A comprehensive set of over 60 experimental tests were completed as part of the overall research program. Thirty-two (32) tests were analyzed as part of this study relating to the morphological response of a gravel beach with and without various LWD configurations. The tests were conducted within a wave flume at the National Research Council’s Ocean, Coastal and River Engineering Research Centre (NRC-OCRE), at a large scale (5:1) based on site characteristics and LWD design characteristics made during the previous field investigations. Tests were also conducted to assess experiment repeatability, sensitivity to test duration, sensitivity to wave height, wave period, and relative water level, influence of regular waves, and influence of log roughness. The position of the most seaward LWD (whether considering distance or elevation) was found to be strongly linked to morphological response. A theoretical relationship was developed between LWD elevation and sediment volume change. Configurations which included LWD placement below the still water level, such as the Benched configuration, were found to be most effective at stabilizing the beach profile. As part of the experimental modeling program, 24 tests were also conducted for the purpose of estimating the effect of LWD design configuration on wave run-up. In total, six different beach and LWD configurations were tested under a base set of four regular wave conditions. The study findings indicated that anchored LWD may increase wave run-up relative to a gravel beach with no structures. In particular, configurations with more logs tended to result in higher wave run-up. However, additional research is needed on the effect of LWD on wave run-up to confirm and expand these findings. There are a number of potential engineering, ecological, social, and economic benefits associated with anchored LWD installations if designed, installed, and monitored appropriately for the site conditions and user needs. To realize these potential benefits, significant additional research is needed on the topic. One of the most significant barriers to usage is a lack of information on how to effectively anchor LWD structures. However, this research project provides a baseline for future comprehensive studies on the effect and design of coastal protection using LWD. The project provides preliminary design considerations for the usage of LWD as coastal protection and contributes to the growing body of literature on nature-based solutions.
242

The extent of bush encroachment and its effects on the ecosystem services of a mixed bushveld of Makapanstad rangelands, North-West Province, South Africa

Mndela, Mthunzi 12 August 2020 (has links)
The encroachment of rangelands by woody plants causes an imbalance in the grass:bush ratio leading to decline in ecosystem services including grazing capacity, biodiversity, and water yield. This study assessed the historical changes in woody cover, and the effects of bush clearing on water loss, atmospheric carbon uptake, herbaceous vegetation, and soil seed bank (SSB) dynamics. The study was conducted at Makapanstad (Radi and Maseding) and Kgomokgomo rangelands, North-West Province, South Africa. Landsat imagery was used to assess woody cover over 34 years (1984 - 2018) in a total area of 16 397 ha. Evapotranspiration (ET) and gross primary productivity (GPP) were assessed in cleared sites and their adjacent uncleared sites from 2013 to 2018. Woody plant densities, herbaceous composition, ground cover and biomass production were assessed in 24, 5×5-m plots distributed equally in three 2500-m2 bush-encroached blocks in each rangeland in February 2016. Three samples for soil nutrient analysis were collected 20-cm deep in each plot. Thereafter, half (1250-m2) of each block was mechanically cleared to make three replicates of cleared and uncleared microsites. Post-treatment survey of vegetation was conducted in February 2017. SSB was assessed for samples collected in April 2016 before bush clearing and in August, October and December 2016, and April and August 2017 in paired microsites. In 1984, herbaceous cover (humid + arid grasslands) dominated, accounting for 36% of the total area followed by woody cover (shrublands + bushlands) and unvegetated cover (bare soils + abandoned croplands), with respective proportions of 33 and 31%. There were substantial land cover changes over time, with shrub cover increasing linearly (r2 = 0.94, p < 0.05) at a rate of 0.26% year-1, increasing the total woody cover (TWC) to 38% in 2018. Cropland abandonment was the main driver of increase in shrub cover in the study area. Herbaceous cover declined with increase in TWC (r2 = 0.69), whereas bare soil cover increased (r2 = 0.70) with TWC over time. The main encroachers were Vachellia tenuispina at Radi, Vachellia tortilis at Maseding and Dichrostachys cinerea and V. tortilis at Kgomokgomo. Most of the woody species correlated with total N and clay content (r = 0.96; p < 0.05) in black vertic clay soils of Radi and Maseding, whereas non-leguminous species correlated with total N and C:N in the red-yellow apedal soils of Kgomokgomo. ET and GPP varied interannually in all rangelands and both declined significantly (p < 0.05) after bush clearing at Radi and Kgomokgomo but not at Maseding. ET increased with GPP in cleared (r2 = 0.50-0.59) and uncleared sites (r2 = 0.82-0.93) at Radi and they showed a strong relationship (r2 >0.70) in both sites at Maseding and Kgomokgomo. ET ranged from 0.26-0.46 and 0.48-0.97 Kg H2O m-2 day-1 in cleared and uncleared sites, respectively, at Radi and from 0.44-0.98 and 0.63-1.24 Kg H2O m-2 day-1 at Kgomokgomo. Total SSB densities (constituted mostly by early successional species) increased significantly (p < 0.05) to 2470, 1872 and 693 seeds m-2 at Radi, Maseding and Kgomokgomo, respectively, in cleared microsites in August 2017. Similarly, biomass production (BP) and basal cover (BC) were highest in cleared relative to uncleared microsites. Overall, increase in woody cover reduced herbaceous cover and this calls for bush control in the studied rangelands. The decline in ET after bush clearing suggested that bush clearing could be used to increase rangeland water yield. Increased SSB densities, BP and BC indicated that bush clearing facilitates passive restoration. / Thesis (PhD (Pasture Science))--University of Pretoria, 2020. / Agricultural Research Council / National Research Foundation / Plant Production and Soil Science / PhD (Pasture Science) / Unrestricted
243

The Relationship Between Salinity and Drought Tolerance In Turfgrasses and Woody Species

Leksungnoen, Nisa 01 May 2012 (has links)
Both salinity and drought stresses induce osmotic stress. Thus, cross-tolerance responses and mechanisms may occur in plants. The overall objectives of this study were to determine morphological and physiological responses and mechanisms of turfgrasses and woody species under salinity and drought stress conditions, and determine the relationship between drought and salinity tolerance ability in those species. Five turfgrass entries, ‘Gazelle’ and ‘Matador’ tall fescue (TF), ‘Midnight’ Kentucky bluegrass (KBG), PI368233 (Tolerant KBG), and PI372742 (Susceptible KBG), and three woody species, bigtooth maple (xeric-non saline), bigleaf maple (mesicnon saline) and Eucalyptus (mesic-saline) were compared. For the drought study, water was withheld in Chapter 2 while the dry down treatment was based on daily evapotranspiration (ET) in Chapters 5 and 6. For the salinity study, NaCl and CaCl2 in turfgrasses at electrical conductivity (EC) of 1, 6, 12, 18, and 30 dS m-1 (Chapter 3) and woody species at EC of 1, 3, 6, 9, and 12 dS m-1 (Chapter 4). Susceptible KBG was sensitive to s
244

Large Woody Debris Mobility Areas in a Coastal Old-Growth Forest Stream, Oregon

Bambrick, Beth Marie 04 March 2013 (has links)
This study uses a spatial model to visualize LWD mobility areas in an approximate 1km reach of Cummins Creek, a fourth-order stream flowing through an old-growth Sitka spruce-western hemlock forest in the Oregon Coast Range. The model solves a LWD incipient motion equation for nine wood size combinations (0.1m, 0.4m, 1.7m diameters by 1.0m, 6.87m, 47.2m lengths) during the 2-year, 10-year, and 100-year discharge events. Model input variables were derived from a combination of field survey, remotely sensed, and modeled data collected or derived between June 2010 and July 2011. LWD mobility map results indicate the 2-year discharge mobilizes all modeled diameters, but mobile piece lengths are shorter than the bankfull channel boundary. Mobility areas for each wood size combination increases with discharge; 10-year and 100-year discharge events mobilize wood longer than average bankfull width within a confined section of the main stem channel, and mobilize LWD shorter than bankfull width within the main stem channel, side channels, and floodplain. No discharge event mobilizes the largest LWD size combination (1.7m / 47.2). Recruitment process was recorded for all LWD during June 2010, revealing that all mobile wood in the study reach was shorter than bankfull width. Based on these conflicting results, I hypothesize the distribution of wood in Cummins Creek can be described in terms of discharge frequency and magnitude, instead of as a binary mobile/stable classification. Mobility maps could be a useful tool for land managers using LWD as part of a stream restoration or conservation plan, but will require additional calibration.
245

Ecology of sunken wood community in the ocean / 海洋における沈木生物群集の生態学

Nishimoto, Atsushi 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18107号 / 理博第3985号 / 新制||理||1575(附属図書館) / 30965 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 朝倉 彰, 講師 宮崎 勝己, 教授 疋田 努 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
246

Enzymatic and structural studies of glutathione S-transferases of white-rot fungus Ceriporiopsis subvermispora which is a selective degrader of lignin in woody biomass / 木質バイオマス中のリグニンを選択的に分解する白色腐朽菌Ceriporiopsis subvermisporaのグルタチオンS-トランスフェラーゼに関する酵素学的および構造学的研究

WAN, HASNIDAH BINTI WAN OSMAN 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第21885号 / エネ博第386号 / 新制||エネ||75(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 片平 正人, 教授 森井 孝, 教授 木下 正弘 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
247

Oberlin's Experimental Hazelnut Orchard: Exploring Woody Agriculture's Potential for Climate Change Mitigation and Food System Resilience

Fireman, Naomi January 2019 (has links)
No description available.
248

Interactive effects of bark beetles, Ophiostomatoid fungi, and subterranean termites on wood decomposition and the biogeochemical cycling of pine forests

Pace, Kimberlyn 12 May 2023 (has links) (PDF)
A frequent source of pine tree mortality in recent years can be attributed to pine bark beetles and their vectored Ophiostomatoid fungi, an organism that has been observed to attract subterranean termites that preferentially recruit to this downed woody debris. This interaction may significantly modify biogeochemical fluxes in bark beetle mass mortality events, but studies are often limited to singular regions or single pine-dominated ecosystems. Two studies were designed to test the interactive effects of these associations on terrestrial biogeochemical cycles and decomposition processes, the first using replicated field trials in Mississippi, Arizona, and Honduras across two years and the second across five years in Mississippi. Both studies utilized Ophiostomatoid inoculation and invertebrate exclusion techniques to determine the individual and interactive contributions from biotic factors on biogeochemical cycling. Local drivers were found to have greater influence on biogeochemical cycling and decomposition before climate drivers overwhelmed their influence in later years.
249

Biomass and Decomposition Dynamics of Invasive Chinese Tallow (Triadica Sebifera) in the Southeastern United States

Stoklosa, Allison M 13 December 2014 (has links)
Recent and anticipated global change has focused concern on the role of forests in ecosystem functioning and carbon sequestration. Of key importance is identifying relevant factors that drive carbon and nutrient dynamics and the consequences of changes in these processes. Systems undergoing invasion by invasive woody species are particularly prone to changes. This study examined the branch and crown biomass and decay dynamics for the invasive Chinese tallow tree in Mississippi, USA as well as the influences of stand and site conditions on biomass modeling and arthropod contributions to fine woody debris decay. Coupling biomass and decay models presents a method for modeling carbon sequestration and nutrient turnover rates at the stand level. These predictions will aid our understanding of the consequences of ecosystem change, especially those driven by invasive species.
250

Effects of Intercropping Switchgrass in Loblolly Pine Plantations on Bird Communities

Loman, Zachary G 13 December 2014 (has links)
Intercropping switchgrass (Panicum virgatum) between tree rows within young pine (Pinus spp.) plantations is a novel method to generate lignocellulosic biofuel feedstocks within intensively managed forests. Intensively managed pine supports diverse avian assemblages potentially affected by establishment and maintenance of a biomass feedstock. I sought to understand how establishing switchgrass on an operational scale affects bird communities within intercropped plantations as compared to typical intensively managed loblolly pine (Pinus taeda) plantations. I conducted breeding bird point counts, nest searching and monitoring, and coarse woody debris (CWD) surveys following establishment of intercropped switchgrass stands (6 replicates), traditionally-managed pine plantations, and switchgrass-only plots (0.1 km2 minimum) in Kemper Co., MS from 2011 to 2013. I found establishment of intercropping did not affect downed CWD, but reduced standing snags and green trees. I detected 59 breeding bird species from 11,195 detections and modeled nest survivorship for 17 species. Neotropical migrants and forest-edge associated species were less abundant in intercropped plots than controls for two years after establishment, and more abundant in year three. Short distance migrants and residents were scarce in intercropped and control plots initially, and did not differ between these treatments in any year. Species associated with pine-grass habitat structure were less abundant initially in intercropped plots, but converged with pine controls in subsequent years. Switchgrass monocultures provided minimal resources for birds. There was no evidence supporting an effect of intercropping on songbird nest survivorship. I found evidence for dominance of one species, yellow-breasted chat (Icteria virens), over another, indigo bunting (Passerina cyanea) in competition for nest sites, which illustrates how songbirds competing for nest sites can coexist in sympatry without the dominant species driving subordinate competitors to local extirpation. This dissertation, and related publications, are among the earliest research on wildlife response to intercropping. Forest managers implementing intercropping within pine plantations where vertebrate conservation is a management priority should be aware of potential changes to snag-utilizing species from reductions in green trees and snags. Songbird populations may lag behind traditional management for up to two years following establishment of switchgrass. Intercropping neither positively nor negatively affected songbird nest survival.

Page generated in 0.0335 seconds