Spelling suggestions: "subject:"ford alignment"" "subject:"ford lignment""
11 |
Evaluation of two word alignment systemsWang, Xiaoyang January 2004 (has links)
<p>This project evaluates two different systems that generate wordalignments on English-Swedish data. The systems to be used are the Giza++ system, that may generate a variety of statistical translation models, and I*Trix system developed at IDA/NLPLab that generates word pairs with frequencies. </p><p>The file formats of these two systems, the way of running them and the differences of the two systems are addressed in this paper. Evaluation in this project considers a variety of parameters such as corpus size, characteristics of the corpus, the effect of linguistic knowledge, etc. At the end of this paper, the conclusions of the two systems evaluation are presented. In general, Giza++ is better applying on big corpora while I*Trix is better for small corpora. Especially for corpora with high statistical ratio or special resource, I*Trix has a better performance.</p>
|
12 |
Evaluation of two word alignment systemsWang, Xiaoyang January 2004 (has links)
This project evaluates two different systems that generate wordalignments on English-Swedish data. The systems to be used are the Giza++ system, that may generate a variety of statistical translation models, and I*Trix system developed at IDA/NLPLab that generates word pairs with frequencies. The file formats of these two systems, the way of running them and the differences of the two systems are addressed in this paper. Evaluation in this project considers a variety of parameters such as corpus size, characteristics of the corpus, the effect of linguistic knowledge, etc. At the end of this paper, the conclusions of the two systems evaluation are presented. In general, Giza++ is better applying on big corpora while I*Trix is better for small corpora. Especially for corpora with high statistical ratio or special resource, I*Trix has a better performance.
|
13 |
Koreference z mezijazykové perspektivy / Coreference from the Cross-lingual PerspectiveNovák, Michal January 2018 (has links)
Coreference from the Cross-lingual Perspective Michal Nov'ak The subject of this thesis is to study properties of coreference using cross- lingual approaches. The work is motivated by the research on coreference-related linguistic typology. Another motivation is to explore whether differences in the ways how languages express coreference can be exploited to build better models for coreference resolution. We design two cross-lingual methods: the bilingually informed coreference resolution and the coreference projection. The results of our experiments with the methods carried out on Czech-English data suggest that with respect to coreference English is more informative for Czech than vice versa. Furthermore, the bilingually informed resolution applied on parallel texts has managed to outperform the monolingual resolver on both languages. In the experiments, we employ the monolingual coreference resolver and an improved method for alignment of coreferential expressions, both of which we also designed within the thesis. 1
|
14 |
Confidence Measures for Alignment and for Machine Translation / Mesures de Confiance pour l’Alignement et pour la Traduction AutomatiqueXu, Yong 26 September 2016 (has links)
En linguistique informatique, la relation entre langues différentes est souventétudiée via des techniques d'alignement automatique. De tels alignements peuvent êtreétablis à plusieurs niveaux structurels. En particulier, les alignements debi-textes aux niveaux phrastiques et sous-phrastiques constituent des sources importantesd'information dans pour diverses applications du Traitement Automatique du Language Naturel (TALN)moderne, la Traduction Automatique étant un exemple proéminent.Cependant, le calcul effectif des alignements de bi-textes peut êtreune tâche compliquée. Les divergences entre les langues sont multiples,de la structure de discours aux constructions morphologiques.Les alignements automatiques contiennent, majoritairement, des erreurs nuisantaux performances des applications.Dans cette situation, deux pistes de recherche émergent. La première est de continuerà améliorer les techniques d'alignement.La deuxième vise à développer des mesures de confiance fiables qui permettent aux applicationsde sélectionner les alignements selon leurs besoins.Les techniques d'alignement et l'estimation de confiance peuvent tous les deuxbénéficier d'alignements manuels.Des alignements manuels peuventjouer un rôle de supervision pour entraîner des modèles, et celuides données d'évaluation. Pourtant, la création des telles données est elle-mêmeune question importante, en particulier au niveau sous-phrastique, où les correspondancesmultilingues peuvent être implicites et difficiles à capturer.Cette thèse étudie des moyens pour acquérir des alignements de bi-textes utiles, aux niveauxphrastiques et sous-phrastiques. Le chapitre 1 fournit une description de nos motivations,la portée et l'organisation du travail, et introduit quelques repères terminologiques et lesprincipales notations.L'état-de-l'art des techniques d'alignement est revu dans la Partie I. Les chapitres 2 et3 décriventles méthodes respectivement pour l'alignement des phrases et des mots.Le chapitre 4 présente les bases de données d'alignement manuel,et discute de la création d'alignements de référence. Le reste de la thèse, la Partie II,présente nos contributions à l'alignement de bi-textes, en étudiant trois aspects.Le chapitre 5 présente notre contribution à la collection d'alignements de référence. Pourl'alignement des phrases, nous collectons les annotations d'un genre spécifiquede textes: les bi-textes littéraires. Nous proposons aussi un schéma d'annotation deconfiance. Pour l'alignement sous-phrastique,nous annotons les liens entre mots isolés avec une nouvelle catégorisation, et concevonsune approche innovante de segmentation itérative pour faciliter l'annotation des liens entre groupes de mots.Toutes les données collectées sont disponibles en ligne.L'amélioration des méthodes d'alignement reste un sujet important de la recherche. Nousprêtons une attention particulière à l'alignement phrastique, qui est souvent le point dedépart de l'alignement de bi-textes. Le chapitre 6 présente notre contribution. En commençantpar évaluer les outils d'alignement d'état-de-l'art et par analyser leurs modèles et résultats,nous proposons deux nouvelles méthodes pour l'alignement phrastique, qui obtiennent desperformances d'état-de-l'art sur un jeu de données difficile.L'autre sujet important d'étude est l'estimation de confiance. Dans le chapitre 7, nousproposons des mesures de confiance pour les alignements phrastique et sous-phrastique.Les expériences montrent que l'estimation de confiance des liens d'alignement reste undéfi remarquable. Il sera très utile de poursuivre cette étude pour renforcer les mesuresde confiance pour l'alignement de bi-textes.Enfin, notons que les contributions apportées dans cette thèse sont employées dans uneapplication réelle: le développement d'une liseuse qui vise à faciliter la lecturedes livres électroniques multilingues. / In computational linguistics, the relation between different languages is often studied through automatic alignment techniques. Such alignments can be established at various structural levels. In particular, sentential and sub-sentential bitext alignments constitute an important source of information in various modern Natural Language Processing (NLP) applications, a prominent one being Machine Translation (MT).Effectively computing bitext alignments, however, can be a challenging task. Discrepancies between languages appear in various ways, from discourse structures to morphological constructions. Automatic alignments would, at least in most cases, contain noise harmful for the performance of application systems which use the alignments. To deal with this situation, two research directions emerge: the first is to keep improving alignment techniques; the second is to develop reliable confidence measures which enable application systems to selectively employ the alignments according to their needs.Both alignment techniques and confidence estimation can benefit from manual alignments. Manual alignments can be used as both supervision examples to train scoring models and as evaluation materials. The creation of such data is, however, an important question in itself, particularly at sub-sentential levels, where cross-lingual correspondences can be only implicit and difficult to capture.This thesis focuses on means to acquire useful sentential and sub-sentential bitext alignments. Chapter 1 provides a non-technical description of the research motivation, scope, organization, and introduces terminologies and notation. State-of-the-art alignment techniques are reviewed in Part I. Chapter 2 and 3 describe state-of-the-art methods for respectively sentence and word alignment. Chapter 4 summarizes existing manual alignments, and discusses issues related to the creation of gold alignment data. The remainder of this thesis, Part II, presents our contributions to bitext alignment, which are concentrated on three sub-tasks.Chapter 5 presents our contribution to gold alignment data collection. For sentence- level alignment, we collect manual annotations for an interesting text genre: literary bitexts, which are very useful for evaluating sentence aligners. We also propose a scheme for sentence alignment confidence annotation. For sub-sentential alignment, we annotate one-to-one word links with a novel 4-way labelling scheme, and design a new approachfor facilitating the collection of many-to-many links. All the collected data is released on-line.Improving alignment methods remains an important research subject. We pay special attention to sentence alignment, which often lies at the beginning of the bitext alignment pipeline. Chapter 6 presents our contributions to this task. Starting by evaluating state-of-the-art aligners and analyzing their models and results, we propose two new sentence alignment methods, which achieve state-of-the-art performance on a difficult dataset.The other important subject that we study is confidence estimation. In Chapter 7, we propose confidence measures for sentential and sub-sentential alignments. Experiments show that confidence estimation of alignment links is a challenging problem, and more works on enhancing the confidence measures will be useful.Finally, note that these contributions have been employed in a real world application: the development of a bilingual reading tool aimed at facilitating the reading in a foreign language.
|
15 |
Towards word alignment and dataset creation for shorthand documents and transcriptsRyan, Elisabeth January 2021 (has links)
Analysing handwritten texts and creating labelled data sets can facilitate novel research on languages and advanced computerized analysis of authors works. However, few handwritten works have word wise labelling or data sets associated with them. More often a transcription of the text is available, but without any exact coupling between words in the transcript and word representations in the document images. Can an algorithm be created that will take only an image of handwritten text and a corresponding transcript and return a partial alignment and data set? An algorithm is developed in this thesis that explores the use of a convolutional neural network trained on English handwritten text to be able to align some words on pages and create a data set given a handwritten page image and a transcript. This algorithm is tested on handwritten English text. The algorithm is also tested on Swedish shorthand, which was the inspiration for the development of the algorithm in this work. In testing on several pages of handwritten English text, the algorithm reaches an overall average classification of 68% of words on one page with 0% miss-classification of those words. On a sequence of pages, the algorithm reaches 84% correctly classified words on 10 pages and produces a data set of 551 correctly labelled word images. This after being shown 10 pages with an average of 70.6 words on each page, with0% miss-classification. / Analys av handskrivna texter och skapande av dataset kan främja ny forskning inom språk och avancerad datoranalys av olika författares verk. Det finns dock få handskrivna verk med information om vad varje handskrivet ord betecknar eller dataset relaterade till texten. Oftare finns en transkribering av texten, utan någon exakt koppling mellan de transkriberade orden och handskrivna ord i bilden av ett dokument. Genom att skapa en algoritm som kan ta tillvara handskrivna texter och motsvarande transkription kan potentiellt fler verk datoranalyseras. Kan en algoritm skapas som bara tar in en bild av ett handskrivet dokument och en motsvarande transkription och som returnerar en partiell placering av ord till ordbilder och ett dataset? En algoritm skapas i detta arbete som utforskar möjligheten att använda ett djupt neuralt nätverk tränat på engelsk handskriven text för att koppla ord i ett dokumentet till en transkription, och använda dessa för att skapa ett dataset. Denna algoritm är testad på engelsk handskriven text. Algoritmen testas också på svensk stenografi, vilket är inspirationen till skapandet av algoritmen. Algoritmen testades på ett antal sidor handskriven engelsk text. Där kunde algoritmen klassificera i genomsnitt 68% av orden på en handskriven sida med 0% av dessa ord felklassificerade. På en serie sidor når algoritmen en genomsnittlig klassificering av 84% klassificerade ord, och producerar ett dataset av 551 korrekt klassificerade ordbilder. Detta är efter att ha visat algoritmen 10 sidor med i snitt 70.6 ord per sida. I dessa test nåddes också en felklassificering på 0%.
|
16 |
Překlad z češtiny do angličtiny / Czech-English TranslationPetrželka, Jiří January 2010 (has links)
Tato diplomová práce popisuje principy statistického strojového překladu a demonstruje, jak sestavit systém pro statistický strojový překlad Moses. V přípravné fázi jsou prozkoumány volně dostupné bilingvní česko-anglické korpusy. Empirická analýza časové náročnosti vícevláknových nástrojů pro zarovnání slov demonstruje, že MGIZA++ může dosáhnout až pětinásobného zrychlení, zatímco PGIZA++ až osminásobného zrychlení (v porovnání s GIZA++). Jsou otestovány tři způsoby morfologického pre-processingu českých trénovacích dat za použití jednoduchých nefaktorových modelů. Zatímco jednoduchá lemmatizace může snížit BLEU, sofistikovanější přístupy většinou BLEU zvyšují. Positivní efekty morfologického pre-processingu se vytrácejí s růstem velikosti korpusu. Vztah mezi dalšími charakteristikami korpusu (velikost, žánr, další data) a výsledným BLEU je empiricky měřen. Koncový systém je natrénován na korpusu CzEng 0.9 a vyhodnocen na testovacím vzorku z workshopu WMT 2010.
|
Page generated in 0.0876 seconds