• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 277
  • 33
  • 28
  • 18
  • 9
  • 8
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 858
  • 858
  • 243
  • 94
  • 81
  • 79
  • 69
  • 69
  • 59
  • 55
  • 54
  • 53
  • 52
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

The influence of insulin-like growth factor 1 and its analogues on fibroblasts and dermal wound healing

Marshall, Nicholas John. January 1998 (has links) (PDF)
Includes bibliography (leaves 191-219). Examines the levels of insulin-like growth factor and the presence of IGF binding proteins in human wound fluid. Tests the potency of IGF-1 and 2 analogues in in vitro models of fibroblast activity and their effect on healing in normal and diabetic rodent wounds. Shows that IGF-1, IGF-2 and their binding proteins are present in fluid from a partial thickness cutaneous wound; that the binding proteins negatively modulate the activity of insulin-like growth factors in vitro, but that the IGFs do not necessarily show enhanced activity in vivo at the wound site if binding protein affinity is decreased. Discusses possible roles of these binding proteins in wound repair.
352

Electrical stimulation of cells involved in wound healing

Ly, Mai Thanh, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Problem investigated: Chronic wounds are not only a major burden to the patient arising from general pain and discomfort but also generate economic costs to both these individuals and the health care system. Various electrical stimulation regimes have been employed to study the effects of electrical stimulation on wound healing both in vivo and in vitro. In was hypothesised that electrical stimulation using various waveforms can modulate cell function, particularly cell migration. The aim of this thesis was to study the effects of electrical stimulation on cellular migration, in particular endothelial cells and fibroblasts, key cell types involved in wound healing. The impact of collagen matrix on cell migration was also assessed. Methods: Cells were seeded on either glass or collagen I substrate and stimulated with various electrical regimes via platinum electrodes connected to a constant current source. Cell migration was accessed by manual tracking of cell nuclei over a period of 3 hours from digital time-lapse images acquired during stimulation. Data from cell tracking were analysed for directional migration, migration rates and mean square displacement. Results: No directional cell migration for both endothelial cells and fibroblasts were observed when stimulated with either alternating or biphasic currents. However, surface substrate had impacted on cell motility with opposite effects being observed for the two cell types. Endothelial cells tended to migrate at a faster rate on collagen I substrate than on glass, compared with fibroblasts, which displayed a slower rate of migration on collagen I substrate. Significant changes in mean square displacement of biphasic current stimulated cells on collagen I substrate compared to unstimulated cells were also observed. Conclusion: This thesis has illustrated cell migration can be modulated by electrical stimulation, in particular asymmetric biphasic current. It has also been demonstrated surface substrate can impact cell migration.
353

The influence of insulin-like growth factor 1 and its analogues on fibroblasts and dermal wound healing / Nicholas John Marshall.

Marshall, Nicholas John. January 1998 (has links)
Includes bibliography (leaves 191-219). / Copy 2 lacks some pages. / x, 219 leaves : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Examines the levels of insulin-like growth factor and the presence of IGF binding proteins in human wound fluid. Tests the potency of IGF-1 and 2 analogues in in vitro models of fibroblast activity and their effect on healing in normal and diabetic rodent wounds. Shows that IGF-1, IGF-2 and their binding proteins are present in fluid from a partial thickness cutaneous wound; that the binding proteins negatively modulate the activity of insulin-like growth factors in vitro, but that the IGFs do not necessarily show enhanced activity in vivo at the wound site if binding protein affinity is decreased. Discusses possible roles of these binding proteins in wound repair. / Thesis (M.D.)--Dept. of Surgery, University of Adelaide, 2001?
354

Factors affecting mucosal healing, reciliation, and ciliary function after endoscopic sinus surgery in the sheep.

Wabnitz, David Alexander Michael January 2005 (has links)
The effect of absorbable packing on the healing of nasal respiratory epthelium after endoscopic sinus surgery (ESS) was examined in a diseased sheep model. Full thickness injuries were created on the lateral nasal wall of sheep infested with Oestrus ovi. Sites of injury were packed on one side with hyaluronic acid (HA) packing or hyaluronic acid packing impregnated with insulin-like growth factor- 1 (HA+IGF1) in a randomized fashion. The opposite side was left unpacked as a control. Biopsies were obtained for light microscopy, scanning electron microscopy, and ciliary beat frequency (CBF) analysis over a period of 16 weeks. Statistical analysis of results was performed in order to determine if any intervention had any impact on healing and to determine if there was any correlation between extent of regeneration as assessed by electron microscopy and CBF. Furthermore assessment of the effect of isotonic and hypertonic saline on ciliary beat frequency was performed in healthy human volunteers. Reepithelialization was increased in the HA+IGF1 group compared to the HA group and controls at eight weeks after injury but not at later time points. Cilial regeneration was improved in the HA+IGF1 group compared to the HA group and controls at 16 weeks. CBF was noted to be worse at the eight week time point with the HA+IGF1 group compared to the HA group and controls, but no other statistically significant effects on CBF were noted. This most likely represents a spurious finding. Wide distributions of CBF results were noted, reflecting numerous missing data points due to methodological difficulties. There was a trend noted toward increased CBF with improved grades of reciliation, although this correlation was not statistically significant. However this trend was supported by the finding of statistically significant differences between individual and combined grades of reciliation. Hypertonic saline was found to have a ciliostimulatory effect when compared to normal saline at 5 minutes after administration in healthy human subjects. This effect had disappeared by 60 minutes after administration. It is suggested that the presence of insulin-like growth factor- 1 at the time of mucosal injury improves epithelial regeneration in the short term, but is not sufficient for this effect to be sustained. This improved early epithelial regeneration forms a foundation for cilial regeneration, as is reflected in an improved grade of reciliation at 16 weeks. Our interventions had no effect on CBF, and various experimental problems made it difficult to provide further comment on CBF results. There is evidence that CBF improves as the grade of cilial regeneration improves following ESS. Furthermore, hypertonic saline appears to also have a positive impact on CBF, which is likely to reflect changes in the rheological properties of mucous. A number of possible avenues of enquiry are delineated and recommendations for future research are outlined. / Thesis (M.S.)--Department of Surgery, 2005.
355

Regulation of Fibroblast Activity by Keratinocytes / Keratinocyters påverkan på fibroblasters aktivitet

Nowinski, Daniel January 2005 (has links)
<p>In the healing of cutaneous wounds, paracrine communication between keratinocytes and fibroblasts regulates cell differentiation, proliferation and synthesis of extracellular matrix. Deficient epidermal coverage, as seen in burn-wounds, frequently results in hypertrophic scars. Previous studies suggest that keratinocytes downregulate the production of collagen and profibrotic factors in fibroblasts. We hypothesized that keratinocytes downregulate the expression of the profibrotic factor connective tissue growth factor (CTGF) in fibroblasts, and regulate fibroblast expression of genes important to wound healing. In keratinocyte-fibroblast cocultures, keratinocytes downregulated CTGF mRNA and protein in fibroblasts, through the secretion of interleukin-1 (IL-1) α. Using Affymetrix DNA microarrays, it was demonstrated that factors from keratinocytes regulate the expression of 69 genes important to wound healing. The regulation of 16 of these genes was confirmed by Northern blotting, and IL-1α from keratinocytes regulated all the 16 genes examined. IL-1-mediated CTGF gene regulation was further investigated. Both IL-1 isoforms, α and β, suppressed CTGF expression through an inhibition of CTGF promoter activity. Interestingly, transforming growth factor-β-stimulated Smad phosphorylation was not affected by IL-1. Finally, we hypothesized that CTGF is downregulated in burn wound by split-thickness skin grafting and that the expression of CTGF is suppressed during reepithelialization. The expression of CTGF protein was decreased in successfully skin-grafted wound areas, and increased in open, granulating burn wounds. Moreover, CTGF protein expression was absent beneath the migrating edge of reepithelialization <i>ex vivo</i>. In conclusion, we demonstrate that, in <i>in vitro</i> models, keratinocyte-derived IL-1α regulates the expression of CTGF and other genes with importance to wound healing. Furthermore, it is shown that CTGF expression is suppressed by epidermal wound coverage i burn wounds. These findings may have implications for the understanding of keratinocyte-fibroblast interplay during wound healing and in hypertrophic scar pathogenesis.</p>
356

Effect of Hyaluronan-activation of CD44 on Cell Signaling and Tumorigenesis

Li, Lingli January 2006 (has links)
<p>Hyaluronan (HA), a structural component in the extracellular matrix (ECM), has been recognized as a signaling molecule. It is important during various biological activities such as embryogenesis, angiogenesis, wound healing and tumor progression. Increased amount of hyaluronan during embryonic development is necessary for cell migration and differentiation, but the increased production of hyaluronan by tumor cells or tissue fibroblasts is correlated to poor prognosis for tumor progression and chronic inflammation, respectively. Therefore, understanding the mechanisms regulating HA-enriched matrices and the roles of HA in the biological functions is of fundamental biological importance.</p><p>Four novel findings are described in this thesis: (1) HA fragments (HA12) and the known angiogenic factor FGF-2 promote endothelial cell differentiation by induction of common but also distinct sets of genes, particularly, upregulation of the chemokine <i>CXCL1/GRO1</i> gene is necessary for HA12-induced angiogenesis and this effect is dependent on CD44 activation. (2) High concentrations of hyaluronan suppress PDGF-BB-induced fibroblasts migration and PDGFRβ tyrosine phosphorylation upon activation of hyaluronan receptor CD44, probably by recruiting a CD44-associated phosphatase to the PDGFRβ. (3) PDGF-BB stimulates <i>HAS2</i> transcriptional activity and HA synthesis through upregulation of MAP kinase and PI3 kinase signaling pathways in human dermal fibroblasts. (4) Specific suppression of <i>HAS2</i> gene in the invasive breast cancer cell line Hs578T by RNA interference (RNAi) leads to a less aggressive phenotype of breast tumor cells. This suppressive effect can be reversed by exogenously added hyaluronan.</p><p>In conclusion, binding of hyaluronan to CD44 plays an important role in cell signaling, inflammation and tumor progression. Further studies are required to elucidate the molecular mechanisms through which hyaluronan levels are regulated under physiological or pathological conditions, and to explore compounds involved in hyaluronan accumulation and activity as targets for therapies of chronic inflammation and tumors.</p>
357

The medicinal value of Amaryllidaceae and Asteraceae species used in male circumcision

Dilika, Fikile. January 2002 (has links)
Thesis (Ph. D.)--University of Pretoria, 2002. / Includes bibliographical references.
358

Regulation of Fibroblast Activity by Keratinocytes / Keratinocyters påverkan på fibroblasters aktivitet

Nowinski, Daniel January 2005 (has links)
In the healing of cutaneous wounds, paracrine communication between keratinocytes and fibroblasts regulates cell differentiation, proliferation and synthesis of extracellular matrix. Deficient epidermal coverage, as seen in burn-wounds, frequently results in hypertrophic scars. Previous studies suggest that keratinocytes downregulate the production of collagen and profibrotic factors in fibroblasts. We hypothesized that keratinocytes downregulate the expression of the profibrotic factor connective tissue growth factor (CTGF) in fibroblasts, and regulate fibroblast expression of genes important to wound healing. In keratinocyte-fibroblast cocultures, keratinocytes downregulated CTGF mRNA and protein in fibroblasts, through the secretion of interleukin-1 (IL-1) α. Using Affymetrix DNA microarrays, it was demonstrated that factors from keratinocytes regulate the expression of 69 genes important to wound healing. The regulation of 16 of these genes was confirmed by Northern blotting, and IL-1α from keratinocytes regulated all the 16 genes examined. IL-1-mediated CTGF gene regulation was further investigated. Both IL-1 isoforms, α and β, suppressed CTGF expression through an inhibition of CTGF promoter activity. Interestingly, transforming growth factor-β-stimulated Smad phosphorylation was not affected by IL-1. Finally, we hypothesized that CTGF is downregulated in burn wound by split-thickness skin grafting and that the expression of CTGF is suppressed during reepithelialization. The expression of CTGF protein was decreased in successfully skin-grafted wound areas, and increased in open, granulating burn wounds. Moreover, CTGF protein expression was absent beneath the migrating edge of reepithelialization ex vivo. In conclusion, we demonstrate that, in in vitro models, keratinocyte-derived IL-1α regulates the expression of CTGF and other genes with importance to wound healing. Furthermore, it is shown that CTGF expression is suppressed by epidermal wound coverage i burn wounds. These findings may have implications for the understanding of keratinocyte-fibroblast interplay during wound healing and in hypertrophic scar pathogenesis.
359

Effect of Hyaluronan-activation of CD44 on Cell Signaling and Tumorigenesis

Li, Lingli January 2006 (has links)
Hyaluronan (HA), a structural component in the extracellular matrix (ECM), has been recognized as a signaling molecule. It is important during various biological activities such as embryogenesis, angiogenesis, wound healing and tumor progression. Increased amount of hyaluronan during embryonic development is necessary for cell migration and differentiation, but the increased production of hyaluronan by tumor cells or tissue fibroblasts is correlated to poor prognosis for tumor progression and chronic inflammation, respectively. Therefore, understanding the mechanisms regulating HA-enriched matrices and the roles of HA in the biological functions is of fundamental biological importance. Four novel findings are described in this thesis: (1) HA fragments (HA12) and the known angiogenic factor FGF-2 promote endothelial cell differentiation by induction of common but also distinct sets of genes, particularly, upregulation of the chemokine CXCL1/GRO1 gene is necessary for HA12-induced angiogenesis and this effect is dependent on CD44 activation. (2) High concentrations of hyaluronan suppress PDGF-BB-induced fibroblasts migration and PDGFRβ tyrosine phosphorylation upon activation of hyaluronan receptor CD44, probably by recruiting a CD44-associated phosphatase to the PDGFRβ. (3) PDGF-BB stimulates HAS2 transcriptional activity and HA synthesis through upregulation of MAP kinase and PI3 kinase signaling pathways in human dermal fibroblasts. (4) Specific suppression of HAS2 gene in the invasive breast cancer cell line Hs578T by RNA interference (RNAi) leads to a less aggressive phenotype of breast tumor cells. This suppressive effect can be reversed by exogenously added hyaluronan. In conclusion, binding of hyaluronan to CD44 plays an important role in cell signaling, inflammation and tumor progression. Further studies are required to elucidate the molecular mechanisms through which hyaluronan levels are regulated under physiological or pathological conditions, and to explore compounds involved in hyaluronan accumulation and activity as targets for therapies of chronic inflammation and tumors.
360

Mechanisms of Tissue Vascularization

Kilarski, Witold January 2005 (has links)
Tissue neovascularization in postnatal life occurs during post-traumatic tissue healing, neoplastic growth and in the endometrium during the reproductive cycle of females. Although embryonic angiogenesis has been intensively studied, far less is known about tissue revascularization and vessel remodeling in adults due to methodological difficulties. In the current studies, we developed a novel in vivo model of neovascularization that is performed on the chicken chorioallantoic membrane (CAM). A provisional matrix placed on the CAM was vascularized in response to FGF-2. In order to distinguish new from pre-existing vessels, the matrix was separated from the CAM by a nylon grid. Techniques to visualize the three dimensional structure of vascular networks and a method for rapid and semi-automated quantification were developed. This novel model allowed us to study the effects of potential inhibitors of tissue vascularization and their effects on the pre-existing vasculature. We found that while fumagillin or inhibition of MEK and Src inhibited only neovascularization, addition of cortisol or wortmannin was toxic to pre-existing vessels. The CAM model allowed intravital observations during extended periods of time, which together with immunohistochemical analysis revealed a novel mechanism of tissue vascularization. Tensional forces generated by myofibroblast-mediated contraction of the provisional matrix, induced and directed ingrowth of vascular tissue. During the initial stages of vascularization, the vascular network was recruited from the surrounding tissue through a non-angiogenic mechanism by elongation and enlargement of pre-existing vessels, which were moved as vascular loops with constant functional circulation. Ingrown vessels were remodeled, presumably through intussusception, fusion and pruning. The CAM model was validated by observations of neovascularization associated with healing of the injured mouse cornea.

Page generated in 0.0971 seconds