• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 3
  • Tagged with
  • 24
  • 24
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modélisation du comportement, de l'endommagement et de la rupture de matériaux composites à renforts tissés pour le dimensionnement robuste de structures

Marcin, Lionel 29 January 2010 (has links)
De par leur bonne tenue à l’impact, les matériaux composites tissés sont de bons candidats pour la conception de pièces aéronautiques. Toutefois, le manque de confiance dans les modèles se traduit par de lourdes campagnes expérimentales. L’augmentation de la part de simulation numérique et donc la réduction des coûts de certification passent par le développement d’outils permettant de dimensionner au plus juste les structures composites tissées à matrice organique (CMO) ou céramique (CMC). C’est dans ce cadre que s’inscrit cette thèse. Les formulations proposées par l’Onera a?n de décrire l’e?et de l’endommagement matriciel ont été adaptées et étendues pour prendre en compte les spéci?cités des matériaux de notre étude, en particulier la viscosité pour les CMO. Des essais sur pièces génériques ont été simulés et confrontés à l’expérience dans le but d’évaluer la pertinence des modèles développés. Ces comparaisons en partie validantes ont mis en évidence les limites des modèles dans le cadre de l’analyse de la tenue d’une structure présentant un gradient de contrainte. A?n d’améliorer les prévisions des simulations, les effets de la rupture progressive ont été pris en compte dans les formulations. Pour s’affranchir de la localisation numérique de l’endommagement, une approche originale de régularisation couplant modélisation non locale de l’endommagement et taux d’endommagement limité a été développée. Les confrontations essai/calcul ont mis en évidence l’apport d’une modélisation plus ?ne des mécanismes d’endommagement et de rupture sur l’étude de la tenue de la structure. Compte tenu des nombreuses sources d’incertitudes, quelle confiance accorder à la simulation ? Pour répondre à cette question, l’effet des incertitudes sur des quantités d’intérêts (contrainte à rupture) a été évalué. Par ailleurs, une analyse de sensibilité (décomposition de variance) a été entreprise pour l’étude de faisabilité d’une démarche de capitalisation. Dans l’optique d’une démarche d’analyse de la tolérance aux défauts, l’efficacité de notre approche à traiter diverses singularités (taille, forme) est démontrée. En?n, les limites de la modélisation macroscopique sont discutées. / Due to their high specific properties, the use of woven composite materials has become an important commercial issue in the aeronautical applications. However, the lack of confidence in classic simulation tools used for design and conception of new structures leads to huge experimental campaigns. The increase of simulations and so the decrease of certification costs requires tools development allowing a more accurate design of woven composite structures with polymer (PMC) or ceramic matrix (CMC). This present thesis is focused on that point. The current formulations are extensions of the damage approach developed at Onera to describe matrix damage. Particularly, the nonlinearity due to viscosity for PMC is taken into account. Various structural tests on generic parts has been simulated and compared to experimental results in order to evaluate the efficiency of the models. The simulations are in good agreement with the experiments except for structure with high stress gradient. In order to improve the simulations accuracy, the effect of progressive failures are introduced. To avoid the numerical problems such as damage localization or mesh sensitivity associated with the softening behavior, an original method coupling delay effect and non local approach is proposed. A good agreement between experimental and finite element calcultion results was shown. Given many uncertainties, how much can the simulation be trusted ? In order to answer this question, the influence of uncertainties on given quantities of interest (stress failure for example) has been evaluated. Moreover, a sensivity analysis has been performed for the study of an experiment capitalisation approach. In the prospect of a reliable damage tolerance analysis, the efficiency of our approach to deal with various singularities (size, form) is shown. The limits of a macroscopic modelling are ?nally discussed.
12

A CONTRIBUTION TO THE FINITE ELEMENT FORMULATION FOR THE ANALYSIS OF COMPOSITE SANDWICH SHELLS

TANOV, ROMIL R. January 2000 (has links)
No description available.
13

Failure and damage progression of 3D woven composite structures subjected to out-of-plane loading

Panchal, Dhaval January 2017 (has links)
Three-dimensionally woven composites are a relatively new class of material that offer improved out-of-plane performance by including through-the-thickness mechanical reinforcement compared to traditional laminated composite structures. The mechanical properties are highly dependent upon the weave architecture as this dictates the nature of the through the thickness reinforcement and its effect in improving out-of-plane shear strength. A comparison of two testing methods, Short Beam Strength, and Five Point Bending was conducted over a range of span to thickness ratios with the latter found to be more consistent at producing shear failure over a greater range of span to thickness ratios, although evidence of matrix crushing was present in both, and flexural failure in the Short Beam Strength test. Two weave architectures, the orthogonal and angle weave were subjected to the Five Point Bending test and the failure and damage progression behaviour of both weave architectures were characterised using Digital Image Correlation analysis to measure the edge strain through the thickness of the specimens. This testing showed the angle weave architecture had in general a higher failure strength, and more gradual failure due to longer debonding cracks. The orthogonal weave architecture showed a characteristic post-failure response indicative of crack bridging with discrete load recovery and load drop phases. A numerical model developed from previous work builds on the mosaic modelling method and was modified to include cohesive elements in order to simulate interface debonding via the maximum stress criterion. The simulations are consistently 15 20% greater in failure loads, and 8 - 12% greater in failure shear stresses than those found from the averaged experimental results over the range of tested span to thickness ratios. Post failure response was not modelled. The work presented in this thesis is another step towards gaining a thorough understanding of the mechanical properties of 3D woven composite structures, focussing in particular on out of plane shear strength. The modified mosaic modelling method used showed it is effective at modelling the out of plane testing of orthogonal 3D woven composite structures, and offer the potential to predict the failure of larger composite structures of the same construction and 3D woven architecture although developments are still needed in modelling the post failure response.
14

Endommagement à l'échelle mésoscopique et son influence sur la tenue mécanique des matériaux composites tissés / Damage at the mesoscopic scale and its influence on the mechanical behavior ok woven composites

Doitrand, Aurélien 28 November 2016 (has links)
Ce travail de thèse s’inscrit dans le cadre de la modélisation multi-échelle des matériaux composites à renfort tissé dans le but de prévoir leur comportement mécanique et leur tenue. Les objectifs de cette étude sont de caractériser et de modéliser de manière discrète les mécanismes d’endommagement à l’échelle mésoscopique (échelle du renfort de fibres) afin d’évaluer leur influence sur le comportement mécanique macroscopique des matériaux composites tissés. La démarche adoptée consiste tout d’abord à caractériser expérimentalement les mécanismes d’endommagement d’un matériau composite tissé à renfort de fibres de verre et matrice époxy. Les mécanismes observés sont des fissures intra-toron et des décohésions inter-torons en pointe de fissure. Afin de modéliser ces mécanismes d’endommagement, une géométrie représentative du composite, obtenue par simulation du procédé de compaction du renfort, et un maillage conforme de cette géométrie sont choisis. Les fissures et les décohésions sont modélisées de manière discrète dans le maillage à éléments finis de la cellule élémentaire représentative du composite. L’amorçage des endommagements dans le composite est déterminé en utilisant un critère couplant une condition en contrainte et une condition en énergie. La propagation de ces endommagements dans le matériau est évaluée à l’aide d’une approche basée sur la mécanique de la rupture incrémentale. L’approche proposée permet de prévoir l’amorçage et la propagation des endommagements en prenant en compte les possibles couplages entre les endommagements, et de faire le lien entre les endommagements observés à l’échelle mésoscopique et le comportement mécanique macroscopique du matériau. / The topic of this PhD thesis is multi-scale modeling of woven composites with the aim of predicting their mechanical behavior and strength. The objectives of the presented work are the experimental characterization and numerical modeling of damage at the mesoscopic scale (scale of the reinforcing fabric) in order to evaluate its influence on the macroscopic mechanical behavior of woven composites. First, the characteristic damage mechanisms of a woven composite made of glass fibers and epoxy matrix are determined experimentally. Intra-yarn cracks and decohesions between yarns at the crack tips are observed. In order to model these damage mechanisms at the mesoscopic scale, a geometry representative of the composite, obtained from numerical simulation of the dry fabric compaction, and a conformal mesh of this geometry have been selected. Discrete cracks and decohesions are inserted into the finite element mesh of the composite unit cell. Crack initiation is studied using a coupled criterion based on both a stress and an energy condition. The propagation of cracks and decohesions is modeled using a method based on Finite Fracture Mechanics. The proposed approach allows evaluating of the influence of the damage mechanisms observed at the mesoscopic scale on the macroscopic mechanical behavior of the studied material.
15

A Novel Hip Implant Using 3D Woven Composite Material – Design and Analysis

Adluru, Hari Kishore 02 November 2015 (has links)
The present research focuses on analyzing the possibility of implementing three dimensional woven composite (3DWC) materials in hip implants. The integration of 3DWCs in hip implants has the possibility to both extend the life-time and improve patient outcomes; by spatially varying mechanical properties to meet both biological needs as well as required mechanical loading. In this study, the bulk material properties of 3DWCs were varied based on woven composite architecture and determined using physics based models, which reflect the realistic geometries of fibers in compaction and preform. The multi-digital chain method combined with Extended Finite Elemental Analysis (XFEA) are adopted in this micro-analysis for composite design. Four different woven architectures with a combination of different existing biocompatible fiber and resins are considered in this study. The main objective is to assess the mechanical response of these biocompatible materials in the design of 3D woven architectures and determine their ability to match the required modulus at different regions of a hip implant. Results obtained show 3DWCs are viable candidates for this application. Multiple architectures and materials chosen, were able to achieve the desired mechanical response. Additional studies can use these results as a starting point and framework for further mechanical and biological testing.
16

Modélisation multiéchelle du comportement et de l'endommagement de composites tissés 3D. Développement d'outils numériques d'aide à la conception des structures tissées. / Multiscale modelling of the behavior and damage of 3-D woven composites. Development of numerical tools to aid the conception of woven structures

Roirand, Quentin 08 November 2017 (has links)
Les composites tissés 3D, à l'aide de leurs grandes libertés de conception, peuvent fournir des propriétés mécaniques adaptées aux besoins spécifiques d'une structure. La complexité architecturale de ces matériaux induit néanmoins des propriétés, des comportements ainsi que des endommagements très difficiles à prédire. Les travaux présentés dans ce manuscrit s'inscrivent directement dans cette problématique et cherchent à développer des outils permettant, par simulation numérique, de prévoir les caractéristiques mécaniques de ce type de matériaux. Afin de répondre à cet objectif, une approche multiéchelle, alliant essais expérimentaux et simulations numériques, a été adoptée. Cette démarche permet, en appliquant des sollicitations réelles, de considérer la géométrie des renforts et les hétérogénéités du matériau, observables à l'échelle mésoscopique, qui sont responsables du comportement macroscopique du composite tissé. Le travail d'investigation expérimentale s'est attaché à caractériser le comportement d'un composite interlock 2,5D et des ses constituants ainsi que les mécanismes et cinétiques de rupture, pour des sollicitations de traction/flexion, grâce à des observations tomographiques aux rayons X et au concept d'interzone. En ce qui concerne la modélisation numérique, un critère de rupture permettant de simuler la dégradation ultime du composite, en coupant les fils de renforts, a été présenté et testé sur une cellule représentative du composite expérimentale. Les résultats en termes de localisations, d'orientations et de cinétiques de l'endommagement sont en accord avec les observations expérimentales. Ensuite, après avoir estimé l'influence des différents paramètres architecturaux sur le critère de rupture avec une campagne de calcul éléments finis, des architectures optimisées, pour les sollicitations considérées, ont pu être proposées et comparées à l'interlock 2,5D. Toujours dans l'optique d'une meilleure prédiction du comportement des composites tissés, les travaux se sont également intéressés à une modélisation plus fine des mécanismes d'endommagement. Une approche fiabiliste a donc été introduite sur le critère de rupture à l'aide d'une distribution statistique de Weibull. De plus, un autre mécanisme d'endommagement a aussi pu être pris en compte dans la modélisation en simulant, avec le modèle GTN (Gurson-Tvergaard-Needleman), la cavitation de la matrice. Enfin, des techniques de réduction de modèle ont été employées pour diminuer le coût calcul de la modélisation multiéchelle afin d'identifier, par exemple, des propriétés matériaux par méthode inverse ou de simuler des essais de fatigue. / With their large flexibility of design , 3D woven composites can provide mechanical properties tailored specificially to structural needs. However, the architectural complexity of woven reinforcements presents serious challenges when predicting properties, behaviours and damage processes. The present work deals with these challenges and seeks to develop numerical tools which are able to foresee the mechanical characteristics of this kind of materials. For this purpose, a multiscale approach, which combines experimental tests and numerical simulations, has been adopted. This approach allows, simultaneously, to take into account the loads and composite behavior, at the macroscopic scale, also the reinforcement geometry and the material heterogeneities which are only visible at the mesoscopic scale. The experimental investigation has been carried out to characterize the behaviour of an 2.5D interlock composite and its constituents. Examinations of the damage mechanisms have also been performed, using tomography and the interzone concept, for this woven composite under loadings in tension and combined tension and bending. With regards to the numerical modeling part, the ultimate degradation of the composite was simulated by cutting the reinforcement yarns with a failure criterion, previously reported, on a 3D representative cell of the experimental composite. For the two kinds of macroscopic loadings, the locations, orientations and kinetics of the damage were found to be fully in agreement with the experimental results. The influence of the architectural parameters on the failure criterion was then evaluated by finite element calculation. Consequently, it has been possible to proposed optimized architectures and make a camparison, for the two macroscopic loadings, with the 2.5D interlock woven composite. Still motivated to improve the prediction of the behaviour of woven composites, this work has also been on developing a finer modeling approach to the understanding of damage mechanisms. A stochastic approach was therefore introduced to the failure criterion using a Weibull statistical distribution. In addition, matrix cavitation has also been taken into account in the modelling. This damage mechanism was simulated using the GTN (Gurson-Tvergaard-Needleman) model. Finally, model reduction techniques have been applied to lower the cost of computing multiscale modeling in order to identify, for example, material properties by an inverse method or to simulate fatigue tests.
17

Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour / Modélisation multi-échelle des composites tissés à matrice thermoplastique, comportement cyclique et dépendance au temps

Praud, Francis 19 April 2018 (has links)
Dans ce travail de thèse, une modélisation multi-échelle est mise en place à partir du concept d’homogénéisation périodique pour étudier le comportement cyclique et dépendant du temps des composites tissés à matrice thermoplastique. Avec l’approche proposée, le comportement macroscopique du composite est déterminé à partir d’une simulation éléments finis effectuée sur une cellule unitaire représentative de la microstructure périodique, où les lois de comportement des constituants sont directement intégrées, à savoir: la matrice et les torons. La réponse locale de la matrice est décrite par une loi de comportement phénoménologique multi-mécanismes intégrant viscoélasticité, viscoplasticité et endommagement ductile. Pour les torons, une loi de comportement hybride micromécanique-phénoménologique est considérée. Cette dernière prend en compte l’endommagement anisotrope et l’anélasticité induite par la présence d’un réseau diffus de microfissures à travers une description micromécanique d’un volume élémentaire représentatif contenant des microfissures. Les capacités du modèle multi-échelles sont validées en comparant les prédictions numériques aux essais expérimentaux. Les capacités du modèle sont également illustrées à travers plusieurs exemples où le composite subit des déformations dépendantes du temps lors de chargements monotones, de chargements à amplitude constante ou cyclique et encore lors de chargement multiaxiaux non proportionnels. En outre, le modèle multi-échelle est aussi utilisé pour analyser l’influence des mécanismes de déformation locaux sur la réponse macroscopique du composite. / In this thesis, a multi-scale model established from the concept of periodic homogenization is utilized to study the cyclic and time-dependent response of thermoplastic-based woven composites. With the proposed approach, the macroscopic behaviour of the composite is determined from a finite element simulation of the representative unit cell of the periodic microstructure, where the local constitutive behaviours of the components are directly integrated, namely: the matrix and the yarns. The local response of the thermoplastic matrix is described by a phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and ductile damage. For the yarns, a hybrid micromechanical-phenomenological constitutive model is considered. The latter accounts for anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network through the micromechanical description of a micro-cracked representative volume element. The capabilities of the multi-scale model are validated by comparing the numerical prediction with experimental data. The capabilities of the model are also illustrated through several examples where the composite undergoes time-dependent deformations under monotonic loading, constant or cyclic stress levels and non-proportional multi-axial loading. Furthermore, the multi-scale model is also employed to analyse the influence of the local deformation processes on the macroscopic response of the composite.
18

Effective Property Estimation of Carbon Composites using Micromechanical Modeling

Aswathi, S January 2014 (has links) (PDF)
In recent times, composite materials have gained mainstay acceptance as a structural material of choice due to their tailorability and improved thermal, specific strength/stiffness and durability performance. Carbon-Carbon (C/C) composites are used for high temperature applications such as exit nozzles for rockets, leading edges for missiles, nose cones, brake pads etc. Mechanical property estimation of C/C composites is challenging due to their highly heterogeneous microstructure. Computed Tomography (CT) images (volumetric imaging) coupled with Scanning Electron Microscopy (SEM) reveal a highly heterogeneous microstructure comprised of woven C-fibers, amorphous C-matrix, irregularly shaped voids, cracks and other inclusions. The images also disclose structural hierarchy of the C/C composite at different length scales. Predicting the mechanical behavior of such complex hierarchical materials like C/C composites forms the motivation for the present work. A systematic study to predict the effective mechanical properties of C/C Composite using numerical homogenization has been undertaken in this work. The Micro-Meso-Macro (MMM) principle of ensemble averages for estimating the effective properties of the composite has been adopted. The hierarchical length scales in C/C composites has been identified as micro (single fiber with matrix), meso (fabric) and macro (laminate). Numerical homogenization along with periodic boundary conditions (PBCs) have been used to estimate the effective engineering properties of the material at different length scales. Concurrently, mechanical testing has also been carried out at macro (compression tests) and micro scale (using nano-indentation studies) to characterize the mechanical behavior of C/C composites.
19

Vieillissement par cyclage thermique de composites interlocks 3D à matrice polymère / Thermal Cycling Ageing of 3D Interlock Polymer Matrix Composites

Guigon, Camille 23 March 2015 (has links)
L’introduction des composites dans des pièces structurelles critiques pour les aéronefs représente une réelle rupture technologique et nécessite des études spécifiques afin de maîtriser leur comportement et leur durabilité. Ce travail a pour objectifs de caractériser et de comprendre les mécanismes de vieillissement de composites interlock 3D à fibres de carbone et à matrice polymère lorsqu’ils sont soumis à des cycles thermiques.Dans ce but, un essai de cyclage thermique (-55°C/120°C), dont l’environnement thermique et gazeux est totalement maitrisé, a été mis en place pour le vieillissement d’échantillons composites représentatifs du motif interlock élémentaire. L’analyse des mécanismes de dégradation induits a été réalisée grâce i/ à la mise au point d’une méthode de caractérisation quantitative 3D de l’évolution des microfissures au cours du cyclage, basée sur des observations par microtomographie RX et sur le développement d’une procédure de traitement d’images spécifique, ii/ au développement d’un essai de cyclage thermique in situ synchrotron couplé à une technique de corrélation d’images volumiques 3D, et iii/ à des simulations par éléments finis prenant en compte l’architecture réelle des échantillons à l’échelle mésoscopique et le comportement thermo-viscoélastique de la matrice.Les résultats obtenus mettent en évidence des couplages thermo-chimio-mécaniques complexes,qui s’expriment à travers quatre paramètres influents : le temps (et le nombre de cycles),l’architecture de l’interlock, la ténacité de la matrice et sa sensibilité à la thermo-oxydation. / The introduction of composite materials in critical structural parts for aircrafts represents a real technological breakthrough and requires specific studies to understand their behavior and durability. This work aims to characterize and understand the ageing mechanisms incarbon/epoxy 3D interlock composites when they are submitted to thermal cycling.For this purpose, a thermal cycle test (-55°C/120°C), whose heat and gaseous environment istotally mastered, was set up for the ageing of composite samples of elemental interlock pattern dimensions. Analysis of induced degradation mechanisms was achieved by i/ the development ofa 3D quantitative characterization method of the evolution of microcracks during cycling, basedon observations by microtomography RX and the development of a specific image processing procedure, ii/ the development of an in situ thermal cycle test under synchrotron light, coupled to a digital volume correlation technique, and iii/finite elements simulations taking into account the actual mesoscopic architecture of the samples and the thermo-viscoelastic behavior of thematrix.The results reveal complex thermo-chemo-mechanical couplings that are linked to four important parameters: time (and the number of cycles), the interlock architecture, the matrix toughness andits sensitivity to thermo-oxidation.
20

Damage tolerance of 3D woven composites with weft binders

Arshad, Mubeen January 2014 (has links)
3D woven composites, due to the presence of through-thickness fibre bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, the ability to withstand damage depends on weave architecture as well as the geometry of individual tows. A substantial amount of research has been performed to understand in-plane properties as well as the performance of 3D woven composites exposed to impact loads, but there is limited research on the damage tolerance and notch sensitivity of 3D weaves and no work is reported on the damage tolerance of 3D weaves with a weft binding pattern. In view of the recent interest in 3D woven composites, the influence of weft binder on the tensile, open hole tensile, impact resistance and subsequent residual compressive strength properties and failure mechanisms of 3D woven composites was investigated against equivalent UD cross-ply laminate. Four different 3D woven architectures; layer-to-layer, angle interlocked, twill angle interlock and modified angle interlock structures were produced under identical weaving conditions. All the above mentioned tests were performed in both the warp and weft directions on 3D woven and UD cross-ply laminates. Stress concentration and yarn waviness due to through-thickness reinforcement led to lower mechanical properties compared with the UD cross-ply laminate. However, improved in-plane and damage tolerance properties of 3D woven composites under tensile loads were achieved by modifying the weave architecture. The influence of the weave architecture and binder yarn orientation on the notch insensitivity and damage tolerance of 3D woven composites was less significant for compressive loads. Despite the lower undamaged compression strength of 3D woven structures, their residual compressive strength was found to be superior to their equivalent UD cross-ply laminates. The lower rate of strength reduction in the 3D woven fabrics laminates was attributed to a crack bridging mechanism, effectively inhibiting delamination propagation.

Page generated in 0.182 seconds