Spelling suggestions: "subject:"woven fabric"" "subject:"woven sabric""
21 |
Technology development of novel woven 3D cellular reinforcement for enhanced impact safety on the example of mineral-bonded compositesVõ, Duy Minh Phương 18 July 2024 (has links)
Concrete’s great vulnerability against impact demonstrates significant risks of injury for workers and occupants in all building types, especially existing concrete structures in which protection measures were not originally integrated. Beside the social and economic costs directly associated with impact accidents, the reconstruction or replacement of buildings damaged by impact negatively affects the environment and resources. In response to the increasing public concern for safety and sustainability, the DFG Research Training Group GRK 2250 is formed with the core aim to develop significant improvements in the impact resistance of existing concrete buildings by applying thin strengthening layers made of innovative mineral-bonded composites. The introduction of textile-based high-performance reinforcement is highly instrumental in realizing the required functions of thin mineral-bonded strengthening layers.
Novel impact-resistant 3D reinforcement is developed on the basis of the innovative 3D cellular weaving technology in this dissertation. Woven 3D cellular structures are characterized by outstanding and customizable mechanical characteristics, owning to the flexible incorporation of elements with different materials and geometries both in in-plane and out-of-plane directions. Based on a systematic and partly iterative development process, impact-resistant woven 3D cellular reinforcements containing impact-load-oriented elements and impact-appropriate material combination are successfully designed and optimized. On the one hand, a series of experiments are conducted to capture the working mechanism of woven 3D cellular structure in mineral-bonded composites loaded under impact, and to understand the effects of critical structure features. On the other hand, feasible weave patterns and effective technological solutions are worked out and implemented to enable a reliable and low-damage manufacturing process. Through a series of impact experiments, it can be strongly evidenced that the developed 3D cellular reinforcement pronouncedly enhances the load bearing capacity, ductility and energy dissipation of mineral-bonded composite undergoing impact, thus, remarkably enhances its impact resistance.
The development of impact-resistant woven 3D cellular reinforcements in this dissertation introduces a completely new and unique class of textile-based reinforcement for concrete, as well as mineral-bonded composites, with numerous benefits over the presently available reinforcing structures. A major advantage of the novel 3D cellular reinforcement is the capability to activate and exploit multiple energy dissipation mechanisms using both material and structure properties, through which remarkable impact resistance can be obtained. Thanks to a high degree of versatility and flexibility in material combination and structure design, in combination with a high degree of automation and flexibility of the weaving technology, impact-resistant woven 3D cellular reinforcement that is highly customized to specific impact scenarios can be produced with a significant time and cost efficiency. Furthermore, impact-resistant woven 3D cellular reinforcements possess an integral 3D architecture that ensures a high structure stability, allowing for a speedy casting process with a high placement-accuracy. On that basis, a reasonable production cost and a stable performance of designed functions can be obtained. The successful development of impact-resistant woven 3D cellular reinforcement essentially facilitates the successful creation of high-performance mineral-bonded strengthening layers, through the use of which the impact resistance of existing concrete structures, thus, their sustainable use, significantly enhances.:1 INTRODUCTION AND MOTIVATION 1
2 LITERATURE REVIEW 7
2.1 Fundamentals of concrete and reinforced concrete 7
2.1.1 Normal concrete 7
2.1.2 Structural concrete family 10
2.1.3 Steel reinforced concrete 11
2.1.4 Concrete and reinforced concrete under impact loading 14
2.1.5 Fiber-based reinforcing materials for concrete 18
2.1.6 Fiber reinforced concrete 21
2.1.7 Textile reinforced concrete 22
2.2 Two-dimensional textile concrete reinforcements 24
2.2.1 Welded metal wire mesh 24
2.2.2 Expanded metal mesh 25
2.2.3 Woven 2D reinforcing structures 25
2.2.4 Warp knitted 2D reinforcing structures 27
2.2.5 Stitched 2D reinforcing structures 28
2.2.6 Adhesively-bonded 2D reinforcing structures 29
2.2.7 Discussion of 2D reinforcing structures 30
2.3 Three-dimensional textile concrete reinforcements 33
2.3.1 Assembled 3D reinforcing structures 33
2.3.2 Woven 3D reinforcing structures 34
2.3.3 Warp knitted 3D reinforcing structures 35
2.3.4 Stitched 3D reinforcing structures 36
2.3.5 Adhesively-bonded 3D reinforcing structures 36
2.3.6 Discussion of available 3D reinforcing structures 36
2.4 Woven 3D cellular structures 37
2.5 Conclusion based on literature review 37
3 RESEARCH AIMS AND OBJECTIVES 39
4 PRELIMINARY INVESTIGATION INTO IMPACT BEHAVIOR OF MINERAL-BONDED COMPOSITE REINFORCED WITH WOVEN 3D CELLULAR STRUCTURE 41
4.1 Introduction 41
4.2 Materials under investigation 43
4.2.1 Reinforcement - Reference woven 3D cellular structure 3DWT Ref 43
4.2.2 Matrix - Fine-grained concrete Pagel TF10 44
4.2.3 Comparing reinforcement - Warp knitted 2D structure 2D BZT2 44
4.3 Specimen labeling 45
4.4 Methodology of small-scale plate impact test 46
4.4.1 Specimen preparation 46
4.4.2 Test setup 47
4.5 Preliminary small-scale plate impact test results 47
4.6 Summary and conclusion of preliminary investigation 58
4.7 Derivation of requirements and procedure for developing impact-resistant woven 3D cellular reinforcement 59
5 DEVELOPMENT OF STRUCTURE SYSTEMATICS FOR IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 63
5.1 Fundamentals of woven 3D cellular structure 64
5.1.1 Conventional woven structure 64
5.1.2 Elements of woven 3D cellular structure 65
5.1.3 Formation principles of woven 3D cellular structure 66
5.1.4 Variation possibilities within woven 3D cellular structure 68
5.2 Design concept of mineral-bonded strengthening layers against impact 71
5.3 Requirements for impact-resistant woven 3D cellular reinforcement 73
5.4 Two-plane woven 3D cellular reinforcements 77
5.4.1 Two-plane woven 3D cellular reinforcements with biaxial grids 77
5.4.2 Two-plane woven 3D cellular reinforcements with triaxial grids 81
5.4.3 Two-plane woven 3D cellular reinforcements with quadriaxial grids 82
5.5 Three-plane 3D cellular reinforcements 83
5.6 Material variation 85
5.6.1 Double yarns 85
5.6.2 Hybrid yarns 86
5.7 Selected impact-resistant woven 3D cellular reinforcements for realization and investigation 86
6 DEVELOPMENT OF WEAVE PATTERN FOR IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 89
6.1 Introduction 89
6.2 Two-plane reference structure 3DWT Ref 90
6.3 Two-plane double yarn structure 3DWT DbWi 92
6.4 Three-plane structure 3DWT DbLyr 93
6.5 Two-plane pyramid structure 3DWT Pyr 95
7 DEVELOPMENT OF TECHNOLOGICAL SOLUTIONS FOR THE MANUFACTURE OF IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 101
7.1 3D cellular weaving technology 101
7.2 Manufacture of two-plane double yarn structure 3DWT-DbWi 107
7.3 Manufacture of three-plane structure 3DWT-DbLyr 108
7.4 Manufacture of two-plane pyramid structure 3DWT-Pyr 112
8 TENSILE BEHAVIOR OF SHCC CONTAINING IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 117
8.1 Quasi-static tension tests 117
8.1.1 Specimen preparation 117
8.1.2 Test setup 118
8.1.3 Quasi-static tension test results 119
8.2 High-speed tension tests 126
8.2.1 Specimen preparation 126
8.2.2 Test setup 126
8.2.3 High-speed tension test results 127
9 ENHANCEMENT OF IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 131
9.1 Concept of enhanced impact-resistant 3D cellular reinforcement 131
9.2 Weave pattern development of enhanced impact-resistant reinforcement 3DWT Pyr Hyb 134
9.3 Manufacture of enhanced impact-resistant reinforcement 3DWT Pyr Hyb 136
9.3.1 Material selection 136
9.3.2 Carbon rovings impregnation 142
9.3.3 Steel wires straightening and preshaping 142
9.3.4 Weaving and realized structure 143
10 PERFORMANCE OF MINERAL-BONDED STRENGTHENING LAYER WITH IMPACT-RESISTANT WOVEN 3D CELLULAR REINFORCEMENT 147
10.1 Tensile behavior of SHCC reinforced with 3DWT Pyr Hyb 147
10.1.1 Specimen preparation 147
10.1.2 Quasi-static tension test results 148
10.1.3 Dynamic tension test results 154
10.2 Impact behavior of SHCC reinforced with 3DWT Pyr Hyb 157
10.2.1 Materials under investigation 157
10.2.2 Small-scale plate impact test results 159
10.3 SHCC reinforced with 3DWT Pyr Hyb as strengthening layer on the impacted side of concrete core 169
10.4 Summary and conclusion of the performance investigation on mineral-bonded strengthening layer reinforced with 3DWT Pyr Hyb 173
11 CONCLUSIONS AND RECOMMENDATIONS 175
|
22 |
Numerical modelling of inflatable structures made of orthotropic technical textiles : application to the frames of inflatable tents / Modélisation numérique des structures gonflables en textiles techniques orthotropes : application aux armatures des tentes gonflablesApedo, Komla Lolonyo 10 September 2010 (has links)
L'objectif principal visé par cette thèse est de modéliser les poutres gonflables en textiles techniques orthotropes. Les approches statiques font l'objet de ce rapport. Avant d'aborder ce problème, nous avons été amenés à identifier tous les paramètres qui ont un effet direct sur les propriétés mécaniques effectives de ces composites. Ainsi, nous avons développé un modèle micro mécanique de prédiction de ces propriétés mécaniques. Le modèle proposé est basé sur l’analyse d'un volume élémentaire représentatif (VER) prenant en compte non seulement les propriétés mécaniques et la. fraction de volume de chaque phase dans le VER mais également leur géométrie et leur architecture. Chaque fil dans le VER a été modélisé comme un matériau isotrope transverse (contenant les fibres et la résine). La méthode dite d’assemblage de cylindres a été utilisée pour l’homogénéisation au niveau des fils. Une deuxième homogénéisation est ensuite réalisée. Elle prend en compte la fraction de volume de chaque constituant (fils de chaîne, fils de trame et résine non prise en compte dans les fils). Le modèle a été validé par des résultats expérimentaux existant dans la littérature. Une élude paramétrique a été menée afin d'étudier les effets des divers paramètres géométriques et mécaniques sur ces propriétés mécaniques. Dans l'analyse structurale, un modèle poutre gonflable 3D de Timoshenko en tissu orthotrope a été proposé. Il prend en compte les non-linéarités géométriques et l'effet de la force suiveuse générée par la pression de gonflage. Les équations d'équilibre non-linéaires dérivent du principe des travaux virtuels en configuration lagrangienne totale. Dans une première approche, une linéarisation a été faite autour de la configuration de référence précontrainte pour obtenir les équations adaptées aux problèmes linéaires. A titre d'exemple, le problème de flexion plane a été abordé. Quatre cas de conditions aux limites ont été traités et les résultats obtenus améliorent les modèles existants dans le cas de tissu isotrope. Les charges de plissage ont été également proposées dans chaque cas traité. Dans une deuxième approche, les équations non-linéaires ont été discrétisées par la méthode des éléments finis. Deux types de solutions ont été alors proposées : les solutions aux problèmes éléments finis linéaires obtenues par une linéarisation des équations discrétisées autour de la configuration de référence précontrainte et les solutions aux problèmes éléments finis non-linéaires réalisées en adoptant une méthode Quasi-Newton sous sa forme incrémentale. A titre d’exemple, la flexion d’une poutre encastrée-libre a été étudiée et les résultats améliorent les modèles théoriques. Le modèle éléments finis non-linéaire a été comparé favorablement à un modèle éléments finis coque mince 3D. Une étude paramétrique a été ensuite effectuée. Elle a porté sur l'influence des propriétés mécaniques et sur de la pression de gonflage sur la réponse de la poutre. Les solutions éléments finis linéaires se sont avérées proches des résultats théoriques linéarisés d'une part et les résultats du modèle éléments finis non-linéaire se sont avérés proches des résultats du modèle linéaire dans le cas des propriétés mécaniques élevées alors que le modèle éléments finis non-linéaire est indispensable pour modéliser ces poutres lorsque les propriétés mécaniques du tissu sont faibles / The main objective of this thesis was to model inflatable beams made frorn orthotropic woven fabric composites. The static aspects were investigated in this report. Before planning to develop these models, it was necessary to know all the parameters which have a direct effect on the effective mechanical properties these composites. Thus, a micro mechanical model was performed for predicting the effective mechanical properties. The proposed model was based on the analysis of the representative volume element (RVE). The model took into account not only the mechanical properties and volume fraction of each components in the RVE but also their geometry and architecture. Each yarn in the RVE was modelled as a transversely isotropic material (containing fibres and resin) using the concentric cylinders model (CCIVI). A second volumetric averaging which took into account the volume fraction of each constituent (warp yarn, weft yarn and resin), was performed. The model was validated favorably against experimental available data. A parametric study was conducted in order to investigate the effects of various geometrical and mechanical parameters on the elastic properties of these composites. ln the structural analysis, a 3D Timoshenko airbeam with a homogeneous orthotropic woven fabric (OWF) was addressed. The model took into account the geometrical nonlinearities and the inflation pressure follower force effect. The analytical equilibrium equations were performed using the total Lagrangian form of the virtual work principle. As these equations were nonlinear, in a first approach, a linearization was performed at the prestressed reference configuration to obtain the equations devoted to linearized problems. As example, the bending problem was investigated. Four cases of boundary conditions were treated and the deflections and rotations results improved the existing models in the case of isotropic fabric. The wrinkling load in every case was also proposed. In a second approach, the nonlinear equilibrium equations of the 3DTimoshenko airbeam were discretized by the finite element method. Two finite element solutions were then investigated : finite element solutions for linearized problems which were obtained by the means of the linearization around the prestressed reference configuration of the nonlinear equations and nonlinear finite element solutions which were performed by the use of an optimization algorithm based on the Qua.si-Newton method. As an example, the bending problem of a cantilever inflated beam under concentrated load was considered and the deflection results improve the theoretical models. As these beams are made from fabric, the beam models were validated through their comparison with a 3D thin-shell finite element model. The influence of the material effective properties and the inflation pressure on the beam response was also investigated through a parametric study. The finite element solutions for linearized problems were found to be close to the theoretical linearized results. On the other hand, the results for the nonlinear finite element model were shown to be close to the results for the linearized finite element model in the case of high mechanical properties and the non linear finite element model was used to improve the linearized model when the mechanical properties of the fabric are low
|
23 |
Contributions à la modélisation mécanique du comportement de mèches de renforts tissés à l'aide d'un schéma éléments finis implicite / Contributions to the mechanical modelling of glass fibre tows behavior with a finite elements implicit simulation schemeFlorimond, Charlotte 29 November 2013 (has links)
La simulation du procédé de fabrication de renforts fibreux secs est un enjeu majeur pour l’étude de l’élaboration de matériaux composites, dont l’utilisation dans les industries de pointe s’intensifie rapidement. Ainsi, l’influence du métier à tisser sur la qualité des renforts est primordiale dans la caractérisation de leurs propriétés mécaniques. Une campagne d’essais expérimentaux est tout d’abord réalisée, de manière à identifier les phénomènes physiques mis en jeu. Les différents modes de déformation de la mèche sont ainsi étudiés : élongation, compaction, cisaillement et distorsion. Est étudié également le comportement en flexion et en frottement, afin de mieux appréhender l’effet du procédé de tissage sur les mèches. Deux types de lois de comportement élastiques sont envisagés : une loi hypoélastique et une loi hyperélastique. Sont développées les propriétés de chacune d’entre elles, ainsi que les grandeurs caractéristiques nécessaires à leur implémentation dans le logiciel commercial ABAQUS/Standard. Les algorithmes de deux subroutines sont présentés, correspondant à l’une ou l’autre de ces lois. Le choix est fait de modéliser le comportement mécanique de la mèche à l’aide d’une loi hyperélastique isotrope transverse de type St-Venant, par l’intermédiaire de la subroutine ABAQUS/Standard UANISOHYPER_INV. Enfin, une identification des paramètres matériau à l’aide d’une méthode inverse est proposée. Sont comparés les résultats obtenus par simulation avec les résultats expérimentaux. La loi de comportement alors déterminée permet de mettre en place des simulations de procédé de tissage. / Simulating the manufacturing process of woven preforms is a major stack for understanding the development of composite materials, used in high performance industries. The effect of the weaving loom on the preforms is very important to caracterize their mechanicals properties. Experimental tests are realised to identify the physical phenomenon. Different deformation modes are studied : elongation, compaction, shear and distortion. The bending and friction behavior are also important to understand the effect of weaving process. Two constitutive laws are considered : a hypoelastic law and a hyperelastic law. An analyse of their properties is presented, and their implementation in a commercial software, ABAQUS/Standard, is detailed. In this purpose, two subroutines can be used. The modelisation of the mechanical behavior of the tows is finally realised with a transversely isotropic hyperelastic St-Venant model, with the subroutine ABAQUS/Standard UANISOHYPER_INV. To conclude, an identification method is presented and the simulated results are compared to experimental tests. The obtained consitutive behavior is finally used to simulate the weaving process.
|
24 |
Modélisation numérique du procédé de tissage des renforts fibreux pour matériaux composites / Numerical modelling of the weaving process for textile compositeVilfayeau, Jérôme 13 March 2014 (has links)
L'industrie aéronautique doit faire face aux nouvelles exigences environnementales, tout particulièrement concernant la réduction de la consommation des énergies fossiles. L'utilisation de matériaux composites plus léger permet de répondre en partie à cette attente. Pour limiter les coûts lors de la fabrication et du développement des composites à renforts tissés 3D, il est nécessaire d'utiliser des outils de simulation performants. En particulier, les outils existants, qui discrétisent à une échelle mésoscopique l'architecture des tissus 3D, ne tiennent pas compte de l'influence du procédé de fabrication sur la constitution de la structure textile. Si des outils numériques dédiés à la modélisation du procédé de tressage et de tricotage sont disponibles, il n'en est rien concernant le tissage. Cette étude avait donc pour but de s'intéresser plus particulièrement à la simulation du prodécé de tissage pour pouvoir obtenir une structure de tissu sèche déformée numériquement. La production de différentes architectures de tissu en verre E dans notre laboratoire nous a permis d'observer les différents éléments en contact avec le fil ou le tissu sur la machine à tisser, par le biais de l'utilisation d'une caméra rapide par exemple. Le développement d'un modèle numérique par éléments finis reproduisant le procédé de tissage a été réalisé. Une loi de comportement isotrope transverse fut utilisée pour modéliser les fils de verre. Des premières simulations numériques encourageantes pour la fabrication d'un tissu d'armure toile et d'un tissu d'armure croisé 2-2 sont présentées et comparées avec les tissus réels produits correspondants. / The aeronautical industry faces new challenges regarding the reduction of fossil fuel consumption. One way to address this issue is to use lighter composite materials. The ability to predict the geometry and the mechanical properties of the unit cell is necessary in order to develop 3D reinforcements in composite materials for these aeronautical applications. There is a difficulty to get realistic geometries for these unit cells due to the complexity of their architecture. Currently, existing tools which model 3D fabrics at a meso scale don't take into account manufacturing process influence on the shape modification of the textile structure. There is already some numerical tools that can model the braiding or knitting process, but none have been developed for weaving so far. Consequently, this study deals with the numerical simulation of the weaving process to obtain a deformed dry fabric structure. During the weaving process of E-glass fabrics, achieved in our laboratory, it has been observed that large deformations led to the modification of transverse section of meshes, or local density changes, that can modify the fabrics mechanical resistance. For this reason, a numerical tool of the weaving process, based on finite element modelling, has been developped to predict these major deformations and their influences on the final textile structure. The correlation between numerical results and fabrics produced with glass fibres has been achieved for plain weave and 2-2 twill.
|
25 |
Study on the effects of matrix properties on the mechanical properties of carbon fiber reinforced plastic composites / 炭素繊維強化複合材料の機械特性に及ぼす母材特性の影響に関する研究 / タンソ センイ キョウカ フクゴウ ザイリョウ ノ キカイ トクセイ ニ オヨボス ボザイ トクセイ ノ エイキョウ ニカンスル ケンキュウ邵 永正, Yongzheng Shao 22 March 2015 (has links)
It was found that a significant improvement of mechanical properties of CFRPs can be achieved by the adjustment of the matrix properties such as toughness and CF/matrix adhesion via the chemical modification, as well as the physical modification by a small amount of cheap and environment-friendly nano fibers. Based on investigation of fracture mechanisms at macro/micro scale, the effects of matrix properties and nano fiber on the mechanical properties of CFRP have been discussed. Subsequently, the relationship has been characterized by a numerical model to show how to modulate the parameters of the matrix properties to achieve excellent fatigue properties of CFRP. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
Page generated in 0.0557 seconds