• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 181
  • 181
  • 181
  • 172
  • 60
  • 47
  • 45
  • 44
  • 38
  • 37
  • 28
  • 28
  • 26
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Surface studies of potentially corrosion resistant thin film coatings on chromium and type 316L stainless steel

Johnson, Stephanie Lee January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Peter M. Sherwood / This work is a detailed study of the interaction between two phosphorous-containing acids and the metals chromium and 316L stainless steel. The objective of this work is to investigate the formation of unique thin films on the two metals and to probe the surface chemistry of these films through the use of core level and valence band X-ray photoelectron spectroscopy (XPS). Chromium forms a wide array of oxides and can exist at several valencies. Valence band XPS is used in conjunction with band structure and multiple scattered wave X[alpha] calculations to distinguish which states are present in the resultant films. Both 99.99% chromium and 316L stainless steel foils were treated with orthophosphoric acid and 1-hydroxyethylidene-1,1-diphosphonic acid, otherwise known as etidronic acid. Two methods developed in the Sherwood research laboratory for forming oxide-free films on metal surfaces are utilized in this work. Core level XPS results did not provide sufficient information to draw conclusions regarding the products formed in the reactions. The valence band results showed clear evidence of multiple forms of phosphates forming on the metal surfaces as evidenced by the subtle differences in separation between the phosphorous 3p and 3s peaks as well as differences in separation between the O2s and phosphorous 3s peaks. The Valence Band XPS results were interpreted by X-[alpha] cluster and band structure calculations. Films formed on chromium foil from the orthophosphoric acid were found to be condensed phosphates that are stable in air. Etidronic acid formed very thin phosphate films on chromium with both treatment methods as well as on 316L stainless steel when the bench top method was applied. Treatment of etched 316L steel in the anaerobic cell generated an etidronate film. This sample was the only etidronate film formed, all other etidronate-based films were generated from disassembled portions of the etidronate ion to form phosphate films.
32

Designing next generation high energy density lithium-ion battery with manganese orthosilicate-capped alumina nanofilm

Ndipingwi, Miranda Mengwi January 2015 (has links)
>Magister Scientiae - MSc / In the wide search for advanced materials for next generation lithium-ion batteries, lithium manganese orthosilicate, Li₂MnSiO₄ is increasingly gaining attention as a potential cathode material by virtue of its ability to facilitate the extraction of two lithium ions per formula unit, resulting in a two-electron redox process involving Mn²⁺/Mn³⁺ and Mn³⁺/Mn⁴⁺ redox couples. This property confers on it, a higher theoretical specific capacity of 333 mAhg⁻¹ which is superior to the conventional layered LiCoO₂ at 274 mAhg⁻¹ and the commercially available olivine LiFePO₄ at 170 mAhg⁻¹. Its iron analogue, Li₂FeSiO₄ has only 166 mAhg⁻¹ capacity as the Fe⁴⁺ oxidation state is difficult to access. However, the capacity of Li₂MnSiO₄ is not fully exploited in practical galvanostatic charge-discharge tests due to the instability of the delithiated material which causes excessive polarization during cycling and its low intrinsic electronic conductivity. By reducing the particle size, the electrochemical performance of this material can be enhanced since it increases the surface contact between the electrode and electrolyte and further reduces the diffusion pathway of lithium ions. In this study, a versatile hydrothermal synthetic pathway was employed to produce nanoparticles of Li₂MnSiO₄, by carefully tuning the reaction temperature and the concentration of the metal precursors. The nanostructured cathode material was further coated with a thin film of aluminium oxide in order to modify its structural and electronic properties. The synthesized materials were characterized by microscopic (HRSEM and HRTEM), spectroscopic (FTIR, XRD, SS-NMR, XPS) and electrochemical techniques (CV, SWV and EIS). Microscopic techniques revealed spherical morphologies with particle sizes in the range of 21-90 nm. Elemental distribution maps obtained from HRSEM for the novel cathode material showed an even distribution of elements which will facilitate the removal/insertion of Li-ions and electrons out/into the cathode material. Spectroscopic results (FTIR) revealed the vibration of the Si-Mn-O linkage, ascertaining the complete insertion of Mn ions into the SiO₄⁴⁻ tetrahedra. XRD and ⁷Li MAS NMR studies confirmed a Pmn21 orthorhombic crystal pattern for the pristine Li₂MnSiO₄ and novel Li₂MnSiO₄/Al₂O₃ which is reported to provide the simplest migratory pathway for Li-ions due to the high symmetrical equivalence of all Li sites in the unit cell, thus leading to high electrochemical reversibility and an enhancement in the overall performance of the cathode materials. The divalent state of manganese present in Li₂Mn²⁺SiO₄ was confirmed by XPS surface analysis. Scan rate studies performed on the novel cathode material showed a quasi-reversible electron transfer process. The novel cathode material demonstrated superior electrochemical performance over the pristine material. Charge/discharge capacity values calculated from the cyclic voltammograms of the novel and pristine cathode materials showed a higher charge and discharge capacity of 209 mAh/g and 107 mAh/g for the novel cathode material compared to 159 mAh/g and 68 mAh/g for the pristine material. The diffusion coefficient was one order of magnitude higher for the novel cathode material (3.06 x10⁻⁶ cm2s⁻¹) than that of the pristine material (6.79 x 10⁻⁷ cm2s⁻¹), with a charge transfer resistance of 1389 Ω and time constant (τ) of 1414.4 s rad⁻¹ for the novel cathode material compared to 1549 Ω and 1584.4 s rad-1 for the pristine material. The higher electrochemical performance of the novel Li₂MnSiO₄/All₂O₃ cathode material over the pristine Li₂MnSiO₄ material can be attributed to the alumina nanoparticle surface coating which considerably reduced the structural instability intrinsic to the pristine Li₂MnSiO₄ cathode material and improved the charge transfer kinetics.
33

Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion

Garza, Michelle 05 1900 (has links)
The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral intensity ratios suggest conformal changes of the oxide film on Ni3Al(110). The growth behavior of sputter deposited Pt at ~300K on Ta silicate and SiO2 ultrathin films formed on Si(100) was investigated. The XPS data show that Pt deposition results in uniform growth or "wetting" on Ta silicate and 2-D cluster growth on SiO2. Electroless Cu deposition on ~11 monolayers (ML) Pt/Ta silicate film results in an adherent Cu film which passed the Scotch tape test. In contrast, electroless Cu deposition on ~11ML Pt/SiO2 results in a non-adherent Cu film due to weak Pt/SiO2 interaction.
34

Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration.

Zhao, Xiaopeng 12 1900 (has links)
The TaSiO6 films, ~8Å thick, were formed by sputter deposition of Ta onto ultrathin SiO2 substrates at 300 K, followed by annealing to 600 K in 2 torr O2. X-ray photoelectron spectroscopy (XPS) measurements of the films yielded a Si(2p) binding energy at 102.1 eV and Ta(4f7/2) binding energy at 26.2 eV, indicative of Ta silicate formation. O(1s) spectra indicate that the film is substantially hydroxylated. Annealing the film to > 900 K in UHV resulted in silicate decomposition to SiO2 and Ta2O5. The Ta silicate film is stable in air at 300K. XPS data show that sputter-deposited Cu (300 K) displays conformal growth on Ta silicate surface (TaSiO6) but 3-D growth on the annealed and decomposed silicate surface. Initial Cu/silicate interaction involves Cu charge donation to Ta surface sites, with Cu(I) formation and Ta reduction. The results are similar to those previously reported for air-exposed TaSiN, and indicate that Si-modified Ta barriers should maintain Cu wettability under oxidizing conditions for Cu interconnect applications. XPS has been used to study the reaction of tert-butylimino tris(diethylamino) tantalum (TBTDET) with atomic hydrogen on SiO2 and organosilicate glass (OSG) substrates. The results on both substrates indicate that at 300K, TBTDET partially dissociates, forming Ta-O bonds with some precursor still attached. Subsequent bombardment with atomic hydrogen at 500K results in stoichiometric TaN formation, with a Ta(4f7/2) feature at binding energy 23.2 eV and N(1s) at 396.6 eV, leading to a TaN phase bonded to the substrate by Ta-O interactions. Subsequent depositions of the precursor on the reacted layer on SiO2 and OSG, followed by atomic hydrogen bombardment, result in increased TaN formation. These results indicate that TBTDET and atomic hydrogen may form the basis for a low temperature atomic layer deposition (ALD) process for the formation of ultraconformal TaNx or Ru/TaNx barriers. The interactions of sputter-deposited ruthenium with OSG at 300 K have been studied by XPS for Ru coverages from ~ 0.1 monolayer to several monolayers, using in-situ sample transfer between the deposition and analysis chambers. The results indicate Stranski-Krastanov (SK) type growth, with the completion of the first layer of Ru at an average thickness corresponding to 1 monolayer average coverage. Ru(0) is the only electronic state present. XPS core level spectra indicate weak chemical interactions between Ru and the substrate. A less pronounced tendency towards SK growth was observed for Ru deposition on parylene. Deposition of Ru on OSG followed by electroless deposition of Cu resulted in the formation of a shiny copper film that failed the Scotch® tape test. Results indicate failure mainly at the Ru/OSG interface.
35

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

Pasquale, Frank L. 08 1900 (has links)
A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.
36

Free Radical Chemistries at the Surface of Electronic Materials

Wilks, Justin 08 1900 (has links)
The focus of the following research was to (1) understand the chemistry involved in nitriding an organosilicate glass substrate prior to tantalum deposition, as well as the effect nitrogen incorporation plays on subsequent tantalum deposition and (2) the reduction of a native oxide, the removal of surface contaminants, and the etching of a HgCdTe surface utilizing atomic hydrogen. These studies were investigated utilizing XPS, TEM and AFM. XPS data show that bombardment of an OSG substrate with NH3 and Ar ions results in the removal of carbon species and the incorporation of nitrogen into the surface. Tantalum deposition onto a nitrided OSG surface results in the initial formation of tantalum nitride with continued deposition resulting in the formation of tantalum. This process is a direct method for forming a thin TaN/Ta bilayer for use in micro- and nanoelectronic devices. Exposure to atomic hydrogen is shown to increase the surface roughness of both air exposed and etched samples. XPS results indicate that atomic hydrogen reduces tellurium oxide observed on air exposed samples via first-order kinetics. The removal of surface contaminants is an important step prior to continued device fabrication for optimum device performance. It is shown here that atomic hydrogen effectively removes adsorbed chlorine from the HgCdTe surface.
37

Exfoliation and Air Stability of Germanane

Butler, Sheneve 06 August 2013 (has links)
No description available.
38

Use and Misuse of X-Ray Photoelectron Spectroscopy (XPS): Reproducibility, Gross Errors, Data Reporting, and Peak Fitting

Major, George Hobbs 18 April 2023 (has links) (PDF)
X-ray photoelectron spectroscopy (XPS) is the most widely used surface analysis technique for chemically probing surfaces. Its popularity stems from the large amount of information that can be gathered about the electronic states of the atoms it probes, including core shell information and valence electron information. Simple qualitative analysis (peak identification) can often be performed, but quantitative analysis is a much more complicated process. Although XPS usage has increased dramatically, so has the amount of erroneous analysis observed in the literature. In my thesis, I first present a perspective on how to improve the quality of surface and material data analysis. This chapter focuses on responsible groups, using population biology models and the Prisoner's Dilemma to describe the situation and the potential changes that must be made to counteract error propagation. I quantify errors in XPS data analysis to provide perspective on the gravity of the situation. Over 400 publications in three journals were analyzed. Additionally, another 900 journals were surveyed to determine the quantity of information in the analysis. The parameters include experimental parameters, e.g., the pass energy, peak fitting parameters, the spot size, X-ray source, and the type of spectrometer. I found that over 40% of the publications had significant errors that could potentially change the conclusions of the publication. About 35% of all papers neglected to note the type of spectrometer used, and 85% did not mention the type of software used for analysis. The latter half of this work focuses on XPS peak fitting. I present a broad overview of peak fitting, including how to determine the appropriate background and peak shapes to use, how to quantify XPS data, and how to account for other phenomena associated with photoemission. The line shape chosen for peak fitting is critical, as it is the synthetic shape that is used to model observed physical phenomena. A detailed review on typical line shapes, including the Voigt and pseudo-Voigt functions is presented, along with how to apply them in peak fitting. How and why asymmetric peak shapes are required is also discussed, including which effects cause asymmetry, and if it is inherent to the material or the method of analysis. Finally, a discussion on using constraints to properly model known effects is presented. These efforts were guided by the findings in the former half of this work. The trends presented here are not unique to XPS. Other fields and techniques have similar reproducibility problems. This work discusses possible solutions and what efforts as a community need to be taken to remedy the reproducibility crisis. Additionally, this work includes guides that have original research to improve approaches to XPS analysis, including peak fitting, constraint parameters, and the appropriate use of line shapes.
39

Surface Chemistry Of Application Specific Pads And Copper Chemical Mechanical Planarization

Deshpande, Sameer Arun 01 January 2004 (has links)
Advances in the interconnection technology have played a key role in the continued improvement of the integrated circuit (IC) density, performance and cost. Copper (Cu) metallization, dual damascenes processing and integration of copper with low dielectric constant material are key issues in the IC industries. Chemical mechanical planarization of copper (CuCMP) has emerged as an important process for the manufacturing of ICs. Usually, Cu-CMP process consists of several steps such as the removal of surface layer by mechanical action of the pad and the abrasive particles, the dissolution of the abraded particles in the CMP solution, and the protection of the recess areas. The CMP process occurs at the atomic level at the pad/slurry/wafer interface, and hence, slurries and polishing pads play critical role in its successful implementation. The slurry for the Cu-CMP contains chemical components to facilitate the oxidation and removal of excess Cu as well as passivation of the polished surface. During the process, these slurry chemicals also react with the pad. In the present study, investigations were carried out to understand the effect of hydrogen peroxide (H2O2) as an oxidant and benzotriazole (BTA) as an inhibitor on the CMP of Cu. Interaction of these slurry components on copper has been investigated using electrochemical studies, x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). In the presence of 0.1M glycine, Cu removal rate was found to be high in the solution containing 5% H2O2 at pH 2 because of the Cu-glycine complexation reaction. The dissolution rate of the Cu was found to increase due to the formation of highly soluble Cu-glycine complex in the presence of H2O2. Addition of 0.01M BTA in the solution containing 0.1M glycine and 5% H2O2 at pH 2 exhibited a reduction in the Cu removal rate due to the formation of Cu-BTA complex on the surface of the Cu further inhibiting the dissolution. XPS and SIMS investigations revealed the formation of such Cu-glycine complex, which help understand the mechanism of the Cu-oxidant-inhibitor interaction during polishing. Along with the slurry, pads used in the Cu-CMP process have direct influence an overall process. To overcome problems associated with the current pads, new application specific pad (ASP) have been developed in collaboration with PsiloQuest Inc. Using plasma enhanced chemical vapor deposition (PECVD) process; surface of such ASP pads were modified. Plasma treatment of a polymer surface results in the formation of various functional groups and radicals. Post plasma treatment such as chemical reduction or oxidation imparts a more uniform distribution of such functional groups on the surface of the polymer resulting in unique surface properties. The mechanical properties of such coated pad have been investigated using nanoindentation technique in collaboration with Dr. Vaidyanathan’s research group. The surface morphology and the chemistry of the ASP are studied using scanning electron microcopy (SEM), x-ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR) to understand the formation of different chemical species on the surface. It is observed that the mechanical and the chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD treated pads are found to be hydrophilic and do not require being stored in aqueous medium during the not-in-use period. The metal removal rate using such surface modified polishing pad is found to increase linearly with the PECVD coating time. Overall, this thesis is an attempt to optimize the two most important parameters of the Cu-CMP process viz. slurry and pads for enhanced performance and ultimately reduce the cost of ownership (CoO).
40

The chemical and mechanical effects of binding chitosan to implant quality titanium

Martin, Holly Joy 09 December 2006 (has links)
Biomedical implants are commonly made from commercially pure titanium and other metal alloys, which are chosen for their strength and density. To improve the stability and promote bone cell growth into the implant, efforts to bond coatings to metal have been extensively studied. Many coatings used are considered bioactive, which promote the adhesion and growth of the bone cells surrounding the implant [A.1]. Of these, the most commonly investigated coating is a ceramic called hydroxyapatite, which is brittle, leading to flaking and inadequate bone cell growth [A.2]. Alternate bioactive coatings are being examined, including chitosan, the deacetylated form of chitin. Chitin is the second most abundant polymer in nature [A.3] and is found in the exoskeletons of insects and shellfish [A.4]. Chitosan has been proven to have excellent biocompatibility [A.5], be non-toxic [A.3], and promote the adhesion and growth of bone cells [A.6 ? A.7]. In this research, four treatment combinations were developed and tested in an attempt to improve film bonding. These treatment combinations were created using one of two silane molecules, aminopropyltriethoxysilane and triethoxsilylbutyraldehyde, and one of two metal treatments, passivation and piranha treatment. XPS was used to characterize the reaction steps for each of the treatment combinations. A significant decrease in TiO, along with significant increases in SiOx groups, C ? N ? H, and C = O, indicated that the reactions were proceeding as expected. XPS also indicated that, chemically, the chitosan films were not significantly different and were unchanged by the treatment combinations. Following chemical analysis, mechanical testing was performed on the four treatment combinations. No changes to the bulk properties were seen as demonstrated by nano-indentation, further indicating that the four treatment combinations did not change the chemical properties of chitosan. The bulk adhesion of the films was greatly improved for all four treatment combinations, as demonstrated by tensile testing. The highest value from this research, 19.50 ± 1.63 MPa, was significantly higher than the previously published results of 1.6 ? 1.8 MPa [A.10]. Overall, the treatments developed in this study significantly improved the adhesion of the chitosan film on the titanium substrate, without modifying the chemical or structural properties of chitosan. [A.1] Ratner, B. D. and A. S. Hoffman. Biomaterials Science: An Introduction to Materials in Medicine. California: Academic Press, Inc., 1996, Foreword, 1-8. [A.2] S.D. Cook, K.A. Thomas, J.F. Kay. ?Experimental Coating Defect in Hydroxylapatite-Coated Implants.? Clinical Orthopaedics and Related Research, 1992, 265, 280-290. [A.3] A.K. Singla, M. Chawla. ?Chitosan: some pharmaceutical and biological aspects- an update.? Journal of Pharmacy and Pharmacology, 2001, 53, 1047-1067. [A.4] Q. Li, E.T. Dunn, E.W. Grandmaison, M.F.A. Goosen. ?Application and Properties of Chitosan.? Journal of Bioactive and Compatible Polymers, 1992, 7, 370-397. [A.5] M. Prasitsilp, R. Jenwithisuk, K. Kongsuwan, N. Damrongchai, P. Watts. ?Cellular responses to chitosan in vitro: The importance of deacetylation.? Journal of Materials Science: Materials in Medicine, 2000, 11, 773-778. [A.6] R.A.A. Muzzarelli, M. Mattioli-Belmonte, A. Pugnaloni, G. Biagini. ?Biochemistry, histology, and clinical uses of chitins and chitosans in wound healing.? Chitin and Chitinases, ed. P. Jolles, R.A.A. Muzzarelli, Switzerland: Birkhauser Verlag Basel, 1990. [A.7] P. Klokkevold, L. Vandemark, E.B. Kenney, G.W. Bernard. ?Osteogenesis Enhanced by Chitosan (Poly-N-Acetyl Glucosaminoglycan) In Vitro.? Journal of Periodontology, 1996, 67, 1170-1775. [A.8] J.D. Bumgardner, R. Wiser, P.D. Gerard, P. Bergin, B. Chestnutt, M. Marini, V. Ramsey, S.H. Elder, J.A. Gilbert. ?Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants.? Journal of Biomaterials Science, Polymer Edition, 2003, 14 (5), 423-438.

Page generated in 0.0723 seconds