• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approches numériques et expérimentales pour l’étude des écoulements dans les laboratoires géologiques sur puce (GLoCs) / Numerical and experimental approches for investigating flows in geological labs on chip (GLoCs)

Diouf, Abdou khadre 22 December 2017 (has links)
Ce travail de thèse s’inscrit dans le cadre du projet ANR CGS µLab, qui vise à appréhender lesmécanismes fondamentaux impliqués dans les procédés de stockage profond du CO2 à partir des laboratoiresgéologiques sur puce (GLoCs – geological labs on chip) pour reproduire les conditions depression et de température des milieux géologiques profonds. Au-delà de la compréhension expérimentale,l’apport des techniques de modélisations numériques apparaît essentiel afin de définir des modèlespermettant de prévoir notamment les capacités maximales de stockage à partir des caractéristiques duréservoir (porosité, perméabilité, température, pression, géochimie), et du procédé d’injection (débit,composition). Dans ce contexte, ce travail a principalement deux objectifs : (i) associer l’imagerie expérimentaleet la modélisation numérique pour simuler des écoulements non réactifs dans des GLoCset (ii) suivre expérimentalement les évolutions structurelles d’un milieu poreux 3D soumis à un écoulementréactif. Notre démarche comporte deux parties pour répondre à ces objectifs. Dans la premièrepartie, nous avons effectué la modélisation 3D des perméabilités des GLoCs par la prise de moyennevolumique. Pour ce faire, nous avons d’abord vérifié le comportement darcéen d’un GLoC en fonctionde son nombre de rangs de plots en étudiant un problème de diffusion sur un maillage emboîté quenous avons implémenté à partir d’une image binaire du GLoC pour réduire le temps de calcul. Puis,nous avons mis à jour notre code de perméabilité, qui résout le problème de fermeture de l’écoulement,en calculant analytiquement en 3D le critère de stabilité qui prend en compte l’anisotropie dela géométrie des GLoCs. Nous avons ensuite traité les images numériques 2D des GLoCs avant deprocéder à la génération de leurs volumes élémentaires représentatifs (VERs) 3D. Nous avons enfinsimulé les perméabilités des GLoCs avant de les confronter aux résultats expérimentaux et à ceuxobtenus avec le logiciel PHOENICS. Dans la deuxième partie, nous avons développé un montage expérimentalpermettant de recréer des milieux poreux réactifs en 3D au sein d’un canal microfluidique(lit fixe de microparticules de carbonates de calcium – CaCO3). Grâce à la laminographie X de la ligneID19 de l’ESRF, nous avons pu observer sur des coupes d’image 2D reconstruites les phénomènes dedissolution lors de l’injection successive de volumes constants de solution hors équilibre. Cette preuvede concept a ouvert de nouvelles perspectives d’utilisation de cette méthodologie pour acquérir desdonnées cinétiques sur des phénomènes de fronts réactifs dans les poreux. / This thesis work is included within the ANR CGS µLab projet, which aims to understand thefundamental mechanisms involved in the deep storage processes of CO2 from on-chip geological laboratories(GLoCs - geological labs on chip) to reproduce the pressure and temperature conditionsof deep geological environments. Besides experimental understanding, the contribution of numericalmodeling approaches appears essential in order to define models allowing to predict in particularthe maximum storage capacities based on the characteristics of the reservoirs (porosity, permeability,temperature, pressure, geochemistry), and the injection process (flow rate, composition). In thiscontext, this work has two main goals : (i) to associate experimental imaging and numerical modelingto simulate non-reactive flows in model porous media on chip ; and (ii) to follow experimentally thestructural evolution of a 3D porous medium undergoing a reactive flow. In order to address to thesegoals, the approach we have proposed is divided into two parts. In the first part, we carried out the3D modeling of the permeabilities of GLoCs by taking volume averaging. To do this, we first verifiedthe behavior of a GLoC according to its number of plots rows by studying a diffusion problem ona nested mesh that we have implemented from a GLoC binary image to reduce computation time.Then, we updated our permeability code, which solves the closure problem of flow, by analyticallycalculating in 3D the stability criterion that takes into account the anisotropy of GLoC geometry. Wethen processed the 2D digital images of the GLoCs before proceeding with the generation of their3D representative elementary volumes. Finally, we have simulated the permeabilities of GLoCs beforecomparing them with the experimental results and those obtained with the PHOENICS software. In asecond part, we have developed an experimental set-up to recreate 3D reactive porous media within amicrofluidic channel (fixed packed bed of calcium carbonate - CaCO3 microparticles). Using the X-raylaminography of the ESRF line ID19, we have observed on reconstructed 2D images the dissolutionphenomena occurring during the successive injection of constant volumes of non-equilibrium solution.This proof of concept has opened new possibilities for using this methodology to acquire kinetic dataon reactive front phenomena in porous media.
2

Tomographie par rayons X : correction des artefacts liés à la chaîne d'acquisition / Artefacts correction in X-ray cone-beam computed tomography CBCT

Wils, Patricia 17 November 2011 (has links)
L'imagerie cone-beam computed tomography (CBCT) est une méthodologie de contrôle non destructif permettant l'obtention d'images volumiques d'un objet. Le système d'acquisition se compose d'un tube à rayons X et d'un détecteur plan numérique. La recherche développée dans ce manuscrit se déroule dans le contexte industriel. L'objet est placé sur une platine de rotation et une séquence d'images 2D est acquise. Un algorithme de reconstruction procure des données volumiques de l'atténuation de l'objet. Ces informations permettent de réaliser une étude métrologique et de valider ou non la conformité de la pièce imagée. La qualité de l'image 3D est dégradée par différents artefacts inhérents à la plateforme d'acquisition. L'objectif de cette thèse est de mettre au point une méthode de correction adaptée à une plateforme de micro-tomographie par rayons X d'objets manufacturés poly-matériaux. Le premier chapitre décrit les bases de la physique et de l'algorithmie propres à la technique d'imagerie CBCT par rayons X ainsi que les différents artefacts nuisant à la qualité de l'image finale. Le travail présenté ici se concentre sur deux types d'artefacts en particulier: les rayonnements secondaires issus de l'objet et du détecteur et le durcissement de faisceau. Le second chapitre présente un état de l'art des méthodes visant à corriger le rayonnement secondaire. Afin de quantifier le rayonnement secondaire, un outil de simulation basé sur des techniques de Monte Carlo hybride est développé. Il permet de caractériser le système d'acquisition installé au laboratoire de façon réaliste. Le troisième chapitre détaille la mise en place et la validation de cet outil. Les calculs Monte Carlo étant particulièrement prohibitifs en terme de temps de calcul, des techniques d'optimisation et d'accélération sont décrites. Le comportement du détecteur est étudié avec attention et il s'avère qu'une représentation 2D suffit pour modéliser le rayonnement secondaire. Le modèle de simulation permet une reproduction fidèle des projections acquises avec le système réel. Enfin, le dernier chapitre présente la méthodologie de correction que nous proposons. Une première reconstruction bruitée de l'objet imagé est segmentée afin d'obtenir un modèle voxélisé en densités et en matériaux. L'environnement de simulation fournit alors les projections associées à ce volume. Le volume est corrigé de façon itérative. Des résultats de correction d'images tomographiques expérimentales sont présentés dans le cas d'un objet mono-matériaux et d'un objet poly-matériaux. Notre routine de correction réduit les artefacts de cupping et améliore la description du volume reconstruit. / Cone-beam computed tomography (CBCT) is a standard nondestructive imaging technique related to the acquisition of three-dimensional data. This methodology interests a wide range of applications. An industrial CBCT system comprises an X-ray source and a flat-panel detector. Radiographic images are acquired during a rotation of the object of interest. A reconstruction algorithm leads to a volumic representation of the object and a post-processing routine assesses its validity. Accurate quantitative reconstruction is needed to perform an efficient diagsnotic. However, it is challenged by the presence of different artefacts coming from the acquisition itself. This thesis aims at analyzing and correcting those artefacts in a context of industrial micro-tomography. After an introduction to the physical and algorithmic background of CBCT, the artefacts are presented. Our study adresses two major artefacts: beam hardening and scatter radiations coming from the object and the detector. The second chapter reports on the state of the art in secondary radiation correction. A simulation model of the CBCT imaging chain is developed in a Monte Carlo environment. This model is designed to be realistic in order to get an accurate insight on the processes contributing to the final image formation. The third chapter focuses on the built and validation of the simulation tool. Monte Carlo methods are exact but prohibitively slow. Consequently, acceleration and optimization techniques are used to speed-up the calculations without loss of accuracy. A layer model of the flat-panel detector gives some insight on its secondary radiation behavior. More specifically, we demonstrate that a 2D description of the detector would be sufficient to compute its contribution. Our projection tool fits well with the real system. Finally, the last chapter describes our iterative correction method. The noisy initial reconstruction is segmented into different materials and densities and fed to the simulation framework. Beam hardening and secondary radiations are corrected via the volume reconstructed from the difference between acquired and simulated projections. This correction method is shown to be effective on both mono-material and poly-material objects.
3

NDE applications in microelectronic industries

Meyendorf, N., Oppermann, M., Krueger, P., Roellig, M., Wolter, K. J. 30 August 2019 (has links)
New concepts in assembly technology boost our daily life in an unknown way. High end semiconductor industry today deals with functional structures down to a few nanometers. ITRS roadmap predicts an ongoing decrease of the “DRAM half pitch” over the next decade. Packaging of course is not intended to realize pitches at the nanometer scale, but has to face the challenges of integrating such semiconductor devices with smallest pitch and high pin counts into systems. Advanced techniques of nondestructive evaluation (NDE) with resolutions in volume better than 1 micrometer vixen size are urgently needed for the safety and reliability of electronic systems, especially those that are used in long living applications. The development speed of integrated circuits is still very high and is not expected to decrease in the next future. The integration density of microelectronic devices is increasing, the dimensions become smaller and the number of I/O's is getting higher. The development of new types of packages must be done with respect to reliability issues. Potential damage sources must be identified and finally avoided in the new packages. In power electronics production the condition monitoring receives a lot of interest to avoid electrical shortcuts, dead solder joints and interface crac king. It is also desired to detect and characterize very small defects like transportation phenomenon or Kirkendall voids. For this purpose, imaging technologies with resolutions in the sub-micron range are required.

Page generated in 0.049 seconds