• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biomarker based therapies in high risk cancer patients - MACC1 as molecular target

Zincke, Fabian 13 January 2020 (has links)
Das metastasierende kolorektale Karzinom stellt eine große Herausforderung in der Krebstherapie dar. Verlässliche und effiziente Biomarker zur Prognose des Krankheitsverlaufes oder der Therapieantwort (Prädiktion) sind rar. Metastasis-associated in colon cancer 1 (MACC1) ist ein prognostischer, prädiktiver und kausaler Biomarker für verschiedene Tumorentitäten. Durch die Induzierung von Zielgenen, wie z.B. MET, beeinflusst es Signalwege wie MEK/ERK und AKT/β-catenin und fördert so Zellproliferation und -motilität sowie Tumorprogression und Metastasierung in vivo. Diese Arbeit sollte neue Strategien erforschen diese Prozesse durch die Inhibition von MACC1 auf Transkriptions- und Signaltransduktionsebene zu unterbinden. Mit zwei verschiedenen Screeningmethoden konnten wir Statine als potente transkriptionelle Inhibitoren von MACC1 als auch phosphotyrosin (pY)-abhängige Interaktionen von MACC1 mit essentiellen Signalmolekülen identifizieren: SHP2, GRB2, SHC1, PLCG1 und STAT5B. Statine verringerten MACC1-spezifische Proliferation und Koloniebildung in vitro als auch Tumor Wachstum und Metastasierung in vivo bei Dosen äquivalent der humanen Standardtherapie zur Blutlipidsenkung. Mutation der pY-Bindungsstellen reduzierte die Aktivität des MACC1-induzierten ERK Signalwegs sowie Zellmigration und -proliferation. Anhand unserer Daten orchestriert MACC1, abhängig von MET und EGFR, neue SHP2/SRC/ERK und PKA/SRC/CREB Signalkaskaden zu einem malignen Phänotyp. Gezielte Intervention restringierte die MACC1-abhängige Koloniebildung, was neue therapeutische Interventionspunkte identifiziert und eine hervorragende Basis für Untersuchungen zur Kombinationstherapie darstellt. Die weitere Erforschung der spatiotemporalen Organisation des MACC1 Signalosoms und assoziierter Signalkaskaden soll das volle therapeutische Potential von MACC1 ausschöpfen. Wir empfehlen zudem Statine in der Krebstherapie bzw. -prävention, besonders bei MACC1-stratifzierten Patienten, anzuwenden. / Metastatic colorectal cancer still represents a major challenge in therapy. Reliable and efficient biomarkers for early prognosis of disease course or treatment response (prediction) remain scarce. Metastasis-associated in colon cancer 1 (MACC1) has been established as prognostic, predictive and causal biomarker for several tumor entities. Its induction of target genes such as MET affects several signaling pathways including MEK/ERK and AKT/β-catenin. Thus, it promotes cellular proliferation and motility as well as tumor progression and metastasis formation in vivo. This study intended to explore new strategies to inhibit these processes by targeting MACC1 on transcriptional and signaling level. By two distinct screening methods, we identified statins as potent MACC1 transcriptional inhibitors as well as phosphotyrosine (pY)-dependent interactions of MACC1 with crucial signaling molecules: SHP2, GRB2, SHC1, PLCG1 and STAT5B. Statins showed MACC1-specific reduction of proliferation and colony formation in vitro as well as restriction of tumor growth and metastasis formation in vivo at doses equivalent to human standard lipid reduction therapy. Mutation of the pY-interaction sites abrogated MACC1-dependent ERK signaling as well as cell migration and proliferation. Our data further suggest that MACC1 governs SHP2/SRC/ERK and PKA/SRC/CREB axes conferring a malignant phenotype in response to MET and EGFR. Targeted intervention restricted MACC1-dependent colony formation which indicates new drug intervention points for MACC1 signaling and provides an excellent baseline for further investigations of combinatorial treatments. Additional research about the spatiotemporal organization of MACC1 signalosome formation and downstream signaling will reveal the entire potential of MACC1 as therapeutic target, whereas statins should already be considered for cancer therapy or prevention, especially in patients stratified for MACC1 expression.
2

Reduced replication origin licensing selectively kills KRAS-mutant colorectal cancer cells via mitotic catastrophe

Gastl, Bastian 25 October 2018 (has links)
KRAS ist eines der am häufigsten mutierten Onkogene in Darmkrebspatienten. Dies macht es zu einem guten Ansatzpunkt für gezielte Krebstherapien. Trotz jahrzehntelanger Forschungsbemühungen hat sich jedoch keines der zur Inhibition des mutierten KRAS entwickelten Medikamente klinisch etablieren können. Um eventuelle Schwachstellen von KRAS mutierten Darmkrebszellen aufzudecken, wurde in der vorliegenden Studie ein shRNA basierter Screen in CaCo2 Zellen mit konditioneller KRAS(G12V) Expression ausgeführt. Die maßangefertigte shRNA-Bibliothek umfasste 121 ausgewählte Gene, die zuvor nach MEK Inhibition als stark hoch- oder herunterreguliert identifiziert wurden. Der Screen sowie die Screen-Validierung zeigten, dass KRAS(G12V) exprimierende CaCo2 Zellen besonders sensitiv für den Knockdown des DNA Replikationslizensierungsfaktors Minichromosome Maintenance Complex Component 7 (MCM7) waren, wohingegen sich KRAS(wt) CaCo2 Zellen als weitestgehend resistent gegenüber des MCM7 Knockdowns erwiesen. Ähnliche Ergebnisse wurden im isogenen DLD 1 Zellmodell erzielt. Des Weiteren hat der Knockdown von MCM7 spezifisch in KRAS mutierten Zellen zu erhöhtem Replikationsstress geführt, der durch gesteigerte nukleare RPA Fokalisierung nachgewiesen wurde. Weitere Untersuchungen haben außerdem eine signifikant erhöhte Anzahl an mitotischen Zellen nach gleichzeitigem MCM7 Knockdown und KRAS(G12V) Expression ergeben. Diese Zunahme an mitotischen Zellen wurde zusätzlich von einer stark angestiegenen Anzahl an DNS Schäden in der Mitose begleitet. Das hohe Maß an DNS Schäden in der Mitose kann auf den gesteigerten Replikationsstress zurückgeführt werden, der ungelöst zu einer gestörten Segregation der Chromosomen in der Mitose führt. Zusammenfassend zeigen die Ergebnisse, dass KRAS mutierte Darmkrebszellen sensitiv auf den Knockdown von MCM7 sind. Demzufolge könnte die Inhibition von DNS Replikationslizensierung ein geeigneter Ansatz für die gezielte Therapie von KRAS mutierten Darmkrebs sein. / KRAS ist eines der am häufigsten mutierten Onkogene in Darmkrebspatienten. Dies macht es zu einem guten Ansatzpunkt für gezielte Krebstherapien. Trotz jahrzehntelanger Forschungsbemühungen hat sich jedoch keines der zur Inhibition des mutierten KRAS entwickelten Medikamente klinisch etablieren können. Um eventuelle Schwachstellen von KRAS mutierten Darmkrebszellen aufzudecken, wurde in der vorliegenden Studie ein shRNA basierter Screen in CaCo2 Zellen mit konditioneller KRAS(G12V) Expression ausgeführt. Die maßangefertigte shRNA-Bibliothek umfasste 121 ausgewählte Gene, die zuvor nach MEK Inhibition als stark hoch- oder herunterreguliert identifiziert wurden. Der Screen sowie die Screen-Validierung zeigten, dass KRAS(G12V) exprimierende CaCo2 Zellen besonders sensitiv für den Knockdown des DNA Replikationslizensierungsfaktors Minichromosome Maintenance Complex Component 7 (MCM7) waren, wohingegen sich KRAS(wt) CaCo2 Zellen als weitestgehend resistent gegenüber des MCM7 Knockdowns erwiesen. Ähnliche Ergebnisse wurden im isogenen DLD 1 Zellmodell erzielt. Des Weiteren hat der Knockdown von MCM7 spezifisch in KRAS mutierten Zellen zu erhöhtem Replikationsstress geführt, der durch gesteigerte nukleare RPA Fokalisierung nachgewiesen wurde. Weitere Untersuchungen haben außerdem eine signifikant erhöhte Anzahl an mitotischen Zellen nach gleichzeitigem MCM7 Knockdown und KRAS(G12V) Expression ergeben. Diese Zunahme an mitotischen Zellen wurde zusätzlich von einer stark angestiegenen Anzahl an DNS Schäden in der Mitose begleitet. Das hohe Maß an DNS Schäden in der Mitose kann auf den gesteigerten Replikationsstress zurückgeführt werden, der ungelöst zu einer gestörten Segregation der Chromosomen in der Mitose führt. Zusammenfassend zeigen die Ergebnisse, dass KRAS mutierte Darmkrebszellen sensitiv auf den Knockdown von MCM7 sind. Demzufolge könnte die Inhibition von DNS Replikationslizensierung ein geeigneter Ansatz für die gezielte Therapie von KRAS mutierten Darmkrebs sein. / With KRAS being one of the most frequently altered oncogenes in colorectal cancer (CRC), it is an obvious target for cancer therapy. However, despite enormous efforts over the past three decades to target mutated KRAS, not a single drug has made it to the clinic. To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen was performed in CaCo2 cells harboring conditional oncogenic KRAS(G12V). The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly up- or downregulated in response to MEK inhibition. The screen as well as the subsequent validations showed that CaCo2 cells expressing KRAS(G12V) were sensitive to the suppression of the DNA replication licensing factor Minichromosome Maintenance Complex Component 7 (MCM7), whereas KRAS(wt) CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRAS(G12V) expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.
3

The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness

Grinat, Johanna 08 December 2020 (has links)
Genetisch bedingte Veränderungen im Wnt-Signalweg sind in der Tumorigenese des Darms von zentraler Bedeutung. Mutationen des Wnt-Effektormoleküls β-Catenin in den adulten Stammzellen des Darmepithels führen zu unkontrollierter Proliferation und Expansion der Darmstammzellen und initiieren die Tumorentstehung. Auch in fortgeschrittenen Darmtumoren unterstützt die Wnt-Signalgebung maßgeblich das Tumorwachstum und den Erhalt von Tumorstammzellen. Nach erfolgreicher chemotherapeutischer Behandlung treten oftmals Tumorrezidive auf, für deren Entstehung therapieresistente Tumorstammzellen verantwortlich gemacht werden. Trotz intensiver Forschung fehlen in der Darmkrebstherapie nach wie vor Behandlungsansätze zur gezielten Therapie der Tumorstammzellen. Ziel dieser Dissertation ist es, unser Verständnis der molekularen Regulationsmechanismen in Kolonkarzinomen zu erweitern und die Entwicklung rationaler Behandlungsstrategien zu fördern. Ich konnte die Histonmethyltransferase Mll1 als entscheidenden Faktor in der epigenetischen Regulation humaner und muriner Darmkrebsstammzellen und -tumore identifizieren. Humane Kolonkarzinome weisen eine erhöhte Mll1-Expression auf, die mit dem Level an nukleärem β-Catenin korreliert. Im adulten Darmepithel ist Mll1 insbesondere in den Lgr5+ Stammzellen exprimiert und maßgeblich an der Wnt/β-Catenin-induzierten Stammzellexpansion sowie der Tumorentstehung beteiligt. Der konditionelle Verlust von Mll1 im murinen Darmkrebsmodell verhindert die β-Catenin-induzierte Tumorigenese. Mll1 unterstützt die Selbsterneuerungsfähigkeit und Proliferation der Tumorstammzellen, indem es die Expression von essentiellen Stammzellgenen wie dem Wnt-abhängigen Stammzellmarker Lgr5 aufrechterhält. Eine Inhibition der Mll1-Funktion in der Darmkrebstherapie kann eine gezielte Eliminierung der Tumorstammzellen ermöglichen, wodurch das fortschreitende Tumorwachstum unterbunden und die Bildung von Rezidiven verhindert werden kann. / Genetic mutations inducing aberrant activity of Wnt signalling are causative for intestinal tumorigenesis. Mutations of the Wnt effector molecule β-catenin in adult stem cells of the intestinal epithelium drive uncontrolled proliferation, expand the stem cell pool and initiate tumor formation. In advanced tumors, aberrant Wnt signalling promotes tumor growth and maintains cancer stem cells. The cancer stem cells are highly resistant to conventional chemotherapy and frequently initiate tumor relapse after completion of treatment. Despite extensive research, we are still lacking efficient therapies for colon cancer that specifically eliminate the cancer stem cells. This dissertation aims to expand our knowledge on molecular gene regulatory mechanisms in colon cancer cells to promote the identification and future development of rational therapies for colon cancer patients. I identified the histone methyltransferase Mll1 as an epigenetic regulator in human and mouse intestinal cancer stem cells and tumors. Human colon carcinomas with nuclear β-catenin exhibit high levels of Mll1. In the adult intestinal epithelium of mice, Mll1 is highly expressed in the Lgr5+ stem cells and is a prerequisite for the oncogenic Wnt/β-catenin-mediated stem cell expansion and tumorigenesis. Conditional knockout of Mll1 in an intestinal mouse tumor model prevents the β-catenin-driven intestinal tumorigenesis. Knockdown of Mll1 impairs the self-renewal and proliferation of colon cancer sphere cultures and halts tumor growth in xenografts. Mechanistically, Mll1 sustains the expression of intestinal stem cell genes including the Wnt/β-catenin target gene Lgr5 by antagonizing gene silencing through polycomb repressive complex 2-mediated H3K27 tri-methylation. Interfering with Mll1 function can efficiently eliminate colon cancer stem cells, and has potential as a rational therapy for colon cancer.

Page generated in 0.0566 seconds