• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 45
  • 43
  • 22
  • 15
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 428
  • 101
  • 77
  • 66
  • 62
  • 61
  • 60
  • 46
  • 46
  • 45
  • 43
  • 43
  • 42
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Étude des propriétés optiques de puits quantiques contraints ultra-minces d'InAs/InP

Lanacer, Ali January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
82

Influência da zircônia na deposição biomimética de fosfatos de cálcio sobre a superfície de nanocompósitos de alumina-zircônia / Influence of zirconia on the biomimetic deposition of calcium phosphates on the surface of alumina-zirconia nanocomposites

Sartori, Thauane Aparecida Inácio da Costa 28 February 2019 (has links)
Nanocompósitos de alumina-zircônia (Al2O3-ZrO2) exibem altos valores de tenacidade a fratura (4-8 MPa/m) e resistência a flexão (> 500 MPa), biocompatibilidade e bioatividade, o que propicia seu uso em aplicações biomédicas. Além disso, a literatura indica que altas taxas de formação de fosfatos de cálcio podem ser obtidas mediante associação de tratamento químico de superfície à determinados substratos como, sílica (SiO2), titânio (TiO2) e ZrO2. No entanto, tal influência não foi verificada em sistemas nanoestruturados com matriz de Al2O3. Nesse sentido, o objetivo deste trabalho foi avaliar a influência da ZrO2 em diferentes percentuais de inclusões, quanto a formação dos fosfatos de cálcio sobre a superfície do nanocompósito cerâmico de Al2O3-ZrO2 pelo método biomimético. Para tal, pós cerâmicos foram obtidos pela dispersão de 0, 5, 10 e 15% em volume de ZrO2 nanométrica em matriz de Al2O3, conformados e sinterizados (1050 °C/1 h e 1450° para Al2O3 e 1050 °C/1 h e 1550°C para as demais composições). Após esta etapa, os corpos de prova foram submetidos a tratamento químico superficial com H3PO4 durante 4 dias a 90 °C e, posteriormente, recobertos biomimeticamente em SBF 1,0x, 1,5x e 5,0x, durante 14, 21 e 28 dias. Ao final deste período, as camadas de fosfatos de cálcio depositadas foram caracterizadas por Infravermelho Médio por Transformada de Fourier (FT-MIR) e Difração de Raios-X (DRX), para determinação das áreas de fosfatos totais e fases, em todos os períodos de incubação. De forma geral, observou-se maior deposição de fosfatos de cálcio sobre a superfície dos nanocompósitos com maiores percentuais de inclusões de ZrO2. Além disso, os recobrimentos com todas as soluções de SBF propiciaram a formação de grupos fosfatos (PO43-) e carbonatos (CO32-), Independentemente da concentração de SBF, ou percentual de inclusões de ZrO2 na matriz de Al2O3, apenas três fases foram observadas em função do período de incubação: hidroxiapatita (HA), alfa e beta-fosfatotricálcico (α-TCP e β-TCP). Aos 28 dias de incubação, em todas as condições, maiores teores de ZrO2 influíram para formação da fase α-TCP (r > 0,88). Os resultados obtidos sugerem que a ZrO2 influenciou de forma significativa na formação dos fosfatos de cálcio de interesse biológico (α/β-TCP e HA) na superfície dos nanocompósitos, o que proporciona melhores condições de bioatividade, solubilidade e osteocondução às superfícies dos corpos de prova cerâmicos. Nesse sentido, as biocerâmicas de Al2O3-ZrO2 recobertas com promissoras às aplicações de substituição e remodelação do tecido ósseo. / Alumina-zirconia (Al2O3-ZrO2) nanocomposites exhibit high values of fracture toughness (4-8 MPa/m) and flexural strength (> 500 MPa), biocompatibility and bioactivity, which favors its use in biomedical applications. Furthermore, the literature indicates that high rates of formation of calcium phosphates can be obtained by associating chemical surface treatment with certain substrates such as silica (SiO2), titanium (TiO2) and ZrO2. However, such influence was not verified in nanostructured systems with Al2O3 matrix. In this sense, the objective of this work was to evaluate the influence of ZrO2 on different percentages of inclusions, regarding the formation of calcium phosphates on the surface of the ceramic Al2O3-ZrO2 nanocomposite by the biomimetic method. Then, the ceramic powders were obtained by the dispersion of 0, 5, 10 and 15% by volume of nanometer ZrO2 in Al2O3 matrix, conformed and sintered (1050 °C / 1 h and 1450 °C for Al2O3 and 1050 °C / 1h and 1550°C for other compositions). After this step, the test specimens were submitted to superficial chemical treatment with H3PO4 for 4 days at 90 °C and then, biomimetically coated in 1.0x, 1.5x and 5.0x SBF for 14, 21 and 28 days. At the end of this period, deposited calcium phosphate layers were characterized by Fourier-transform infrared spectroscopy (FT-MIR) and X-ray Diffraction (XRD) for determination of total phosphate and phase areas in all periods of incubation. In general, higher deposition of calcium phosphates on the surface of nanocomposites with higher percentages of ZrO2 inclusions was observed. Regardless of the concentration of SBF or percentage of ZrO2 inclusions in Al2O3 matrix, only three layers were observed as a function of incubation period, hydroxyapatite (HA), alpha and beta-phosphate-calcium (α-TCP and β-TCP). At 28 days of incubation, under all conditions, higher ZrO2 contents influenced the α-TCP phase formation (r > 0.88). The results suggest that ZrO2 significantly influenced the formation of calcium phosphates of biological interest (α / β-TCP and HA) on the surface of the nanocomposites, which provides better conditions of bioactivity, solubility and osteoconduction to the surfaces of the proof ceramic tiles. In this sense, the Al2O3-ZrO2 bioceramics coated with promising to the bone tissue replacement and remodeling applications.
83

Electronic modification of platinum and palladium alloy catalysts and the consequences for dehydrogenation selectivity

Stephen C Purdy (6635948) 10 June 2019 (has links)
Dehydrogenation is the catalytic process of removing hydrogen from a saturated hydrocarbon to produce an olefin. Olefins are important feedstocks for the petrochemical industry and can potentially be used to produce fuels through oligomerization. Alloys containing an active metal such as platinum and palladium and a non-catalytic metal offer improved selectivity towards the olefin. This body of work seeks to further the understanding of how heteroatomic bonds in alloys change the rate and selectivity of alloy catalysts used for dehydrogenation.In the first study, a series of Pt-V bimetallic catalysts are synthesized, which are highly selective propane dehydrogenation catalysts. The bimetallic nature of the nanoparticles was verified by in-situX-ray Absorption Spectroscopy(XAS)and the formation of the Pt3V alloy phase was shown by in-situ synchrotronX-ray Diffraction(XRD). A reduction-oxidation differenceXASmethod was used to examine the surface stoichiometry and found that a shell layer of the alloy phase forms when the particles are platinum rich. Electronic modification of Pt was studied by Pt L3edgeX-ray Absorption Near Edge Structure(XANES),X-ray Photoelectron Spectroscopy(XPS), Resonant Inelastic X-ray Scattering (RIXS)andDensity FunctionalTheory(DFT). The spectral changes observed were shown to be due to changes in the energy of the filled and unfilled 5d density of states, and not due to electron transfer. The electronic modifications cause a weakening of adsorbate binding and destabilization of deeply dehydrogenated hydrocarbons, which contributes to the dehydrogenation selectivity.In the second study, alloys between palladium and five different promoters were synthesized and tested as propane dehydrogenation catalysts.The structure ofthe alloy catalysts was characterized by in-situ XAS and in-situ synchrotron XRD.Zinc and indium form alloy structures with site isolated palladium, while gallium, iron and manganese do not. All of the alloys have improved propane dehydrogenation selectivity compared to monometallic palladium. The propylene production turnover rate of the alloys increased by almost an order of magnitude compared to monometallic Pd, but among the alloys the turnover ratesonly varied by a factor of two despite the different structures and electronic modifications inherent to each phase. The site isolated alloys had higher propylene selectivity than those that were not site isolated. The site isolated alloys showed strongerelectronic modification: both in binding strengths and in Pd projected Density of States (pDOS)by DFT than did the non-site isolated alloys. The commonly used computational selectivity descriptor for dehydrogenation, which is the difference in energy between alkene desorption and alkene C-H bond activation energy correctly predicts that the site isolated alloys will have high selectivity but shows weaker trends for alloys without site isolation. A modified selectivity descriptor, involving the C-C bond breaking barrier in the adsorbed alkyne more accurately reflects the high selectivity of the non-site isolated alloys.In a third study,RIXS and XPSare used to examine trends in the electronic modification of platinum alloys with transition metal and post transition metal promoters. All alloys show an increase in the energy transfer maximum, showing that alloying modifies energy the filled and unfilled density of states. The increase in the energy transfer maximum in platinum alloys with 3d metals islargerfor early transition metals, which by DFT show larger shifts in the d-band center. The post transition elements showsignificantlylarger shifts than to the transition elements, partially due to the lack of orbital overlap between the valence p orbitals and Pt 5d orbitals. Platinum has the same number of valence d electrons regardless of promoter or structure, and redistribution of the 5d electron energy brought about by heteroatomic bonds leads to the observed electronic modifications. The positive binding energy shifts measured by XPS reflect these energy changes, which occur due to changes in the Fermi energy of the alloy, initial state effects and intra and extra atomic relaxation (final state effects). The calculated initial state effect shift is correlated to descriptors of the valence d band, such as the d band center.
84

Caracterização e quantificação de fases em ligas de urânio-silício para aplicação como combustível nuclear / Characterization and quantification of crystalline phases of uranium-silicon alloys for nuclear fuel

Garcia, Rafael Henrique Lazzari 15 February 2019 (has links)
A segurança da operação de reatores nucleares depende dos materiais envolvidos em sua construção, pois são submetidos a variações de temperaturas em ambiente corrosivo e avarias causadas por partículas de alta energia. O combustível, que proporciona energia para o reator, possui vida útil muito menor, mas é submetido às mesmas condições. Dentre as ligas de urânio, o U3Si2 é bastante utilizado em reatores de pesquisa, dada a elevada densidade de urânio, boa condutividade térmica e resistência à amorfização induzida por radiação, ao inchamento e à propagação de trincas. Porém, no processo de fabricação da liga U-Si geralmente são formadas duas ou mais fases cristalinas, com comportamentos distintos sob irradiação. Por esse motivo, a especificação do pó de siliceto de urânio utilizado no reator IEA-R1 do IPEN, e do RMB (Reator Multipropósito Brasileiro) é de, pelo menos, 80% em massa de U3Si2. No entanto, as técnicas de caracterização atualmente utilizadas no controle de qualidade não permitem quantificar as fases cristalinas diretamente. Assim, esse trabalho propõe a utilização da difração de raios X (DRX), alinhada a refinamento pelo método de Rietveld para caracterização do pó de siliceto. Para tal, foram produzidas ligas de urânio contendo 33 a 67 mol% de silício, e técnicas de moagem e ajustes de refinamento foram testados. O método desenvolvido inclui cominuição em moinho vibratório e DRX com refinamento automatizado dos dados, permitindo a quantificação das fases cristalinas de maneira confiável, rápida e com mínima interferência do operador. Os resultados obtidos foram corroborados com os de técnicas como análise de imagem obtida por microscópio eletrônica de varredura (MEV), densidade e análises elementares de U e Si. / The safe operation of a nuclear power system relies on the materials of its construction. During the lifetime of a nuclear power system, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which powers the reactor has a much shorter life, but is also subject to the harsh environments. Considering the several uranium alloys, the U3Si2 is largely used in research reactors, due to is high uranium density, high thermal conductivity, resistance to radiation-induced amorphization, swelling and crack propagation. During its fabrication by melting, however, more than one crystalline phase is usually formed, and, the behavior of each, under irradiation is different and possibly dangerous. For this reason, the specification of the IEA-R1 and RMB (Brazilian Multipurpose Reactor) nuclear reactors describes a minimum of 80wt.% of U3Si2 for the uranium silicide powder. In this sense, a quality control system is vital for the safety and performance of the reactor. Since the currently characterization techniques used do not quantify the crystalline phases directly, the present work proposes the use of X-ray diffraction (XRD), together with Rietveld refinement of the results, for uranium silicide powder characterization. To accomplish this objective, uranium allows were produced containing 33 to 67 mol% of silicon. Milling methods and refinements strategies were tested to improve XRD results. The proposed method includes vibration grinding and XRD with automatic refinement of results, producing fast, reliable and more unbiased results. The quantification results obtained were supported by other techniques as scanning electron microscopy image analysis, density and elementary U and Si characterization.
85

Measurement and understanding the residual stress distribution as a function of depth in atmosphere plasma sprayed thermal barrier coatings

Li, Chun January 2018 (has links)
Residual stresses are generally considered to be the driving forces for the failure of APS TBCs. In this thesis, the residual stress distribution as a function of depth in APS TBC has been measured by synchrotron XRD and explained by image based modelling based on the microstructure detailed studied by SEM and CT. The residual stress/ strain distribution as a function of depth was measured by synchrotron XRD in transmission and reflection geometry. The residual stress/ strain values were analysed using full pattern Rietveld refinement, the sin square psi method and XRD2 method. For the reflection geometry, a new method was developed to deconvolute the residual stress value in each depth from the measured averaged values. Two types of residual stress/strain distribution were observed. The first kind of residual stress was found to be compressive and followed a non-linear trend, which increased from the surface to the interface, decreased slightly and increased again to the interface. This trend showed a jump feature near the interface. The second kind of residual stress distribution possessed two jump features: one near the interface similar to the first kind and another jump feature near the sample surface. The residual stress in both beta and gama phase in the bond coat were also investigated which showed a tensile stress state. The stress trend predicted by our analytical model followed a linear relationship. Comparing this with the first kind of residual stress distribution, two main differences were shown. Firstly the jump feature near the interface and secondly the much larger overall stress gradient. The 3D and 2D microstructure of the sample with the first kind of residual stress distribution was observed by X-ray CT and SEM. The effect of pores, inter-splat cracks and the rumpling interface on the residual stress distribution was investigated by image based modelling. It was proved that the pores and the inter-splat cracks had no large influence on the stress distribution and the jump feature near the interface was a result of the rumpling interface. The much larger stress gradient observed in the measured residual stress distribution was an indication of the stress relaxation in the coating which was proved by a specially designed mechanical test. To explain the jump feature near the sample surface in the second kind of stress distribution. 3D microstructures of the measured samples were observed using X-ray CT. The effect of vertical and the side cracks on the stress distribution were investigated by image based modelling. It was found that the vertical crack had no large influence on the residual stress distribution and the jump feature in the stress trend near the surface could be attributed to the side crack. The effect of other kinds of cracks that were not directly observed in our samples, such as middle or through side cracks, were also investigated. These results were used to develop a semi-destructive method to determine the existence and distribution of cracks in APS TBC.
86

Sourcing of Marble Used in Mosaics at Antioch (Turkey)

Archambeault, Marie Jeanette 09 April 2004 (has links)
Artifacts made of durable materials, such as stone, can provide valuable clues to reconstruct the past. Marble sourcing, in particular,provides information about contact, trade, and other activities in the greater Mediterranean area. The Worcester Art Museum of Massachusetts (WAM) initiated a provenance study by requesting that an analysis of several marble artifacts occur at the University of South Florida's Archaeological Science Laboratory. The 55 marble samples used in this study are from the Worcester Art Museum's collection of Antioch mosaics. Positive results might reveal: 1) preferred sources of tesserae, 2) information about trade of specialized stone, 3) changes in preferred sources during different chronological periods, and 4) workshop preferences. The requested analysis had two objectives. First, once the provenance of the materials is determined, then the results could reveal meaning behind the images contained within the mosaic floor. Second, the results could reveal new trade routes in the Mediterranean. The first step in this analysis was X-ray diffraction (XRD),which differentiates dolomite and calcite marbles. The second step used stable isotope ratio analysis (SIRA), which measures carbon-13 and oxygen-18 isotopic ratios. These two steps have helped to identify Mediterranean marble sources in previous studies. Most of the ancient Mediterranean marble sources have been identified. They have different isotopic values and other characteristics that allow for differentiation. Only one source of dolomite marble exists, which is located in the eastern Mediterranean. It has been identified through XRD in previous studies. Many of the calcite marble sources have different carbon and oxygen isotopic values, which were provided from the SIRA. Those marble artifacts with overlapping carbon and oxygen values can be further analyzed using archaeological, historical, and other information and by using other scientific techniques including cathodoluminescence, electron paramagnetic resonance, and strontium isotope analysis. This thesis discusses the methods used to prepare the samples and analysis conduction; it also discusses the results of the analyses, and presents interpretations regarding the provenance and trade of the marble used for mosaics at Antioch. The results of the SIRA and XRD analysis showed that the materials used for mosaic tesserae come from a variety of sources. Although no definitive matches were found, the results provide the basis for the collection of a colored marble database of sources and artifacts.
87

Discovery of Possible Paleotsunami Deposits in Pangandaran and Adipala, Java, Indonesia Using Grain Size, XRD, and <sup>14</sup>C Analyses

Stuart, Kevin L. 01 March 2018 (has links)
Grain size, 14C age, and X-ray diffraction (XRD) analyses of sediments indicate possible tsunami deposits on the southern coast of Java near Pangandaran and Adipala. Previous studies that have described known recent and paleotsunami deposits were used for comparison. Fining-upward grain size trends, interbedded sand and mud, sediment composition, and trends in heavy mineral abundances are among the characteristics used for tsunami deposit identification. At Batu Kalde, an archaeological site south of Pangandaran, a layer of aragonitic sand with marine fossils was found atop a layer of archaeological fragments at an elevation of ~2-5 m. It is likely this layer was deposited by a tsunami, potentially generated by a mega-thrust earthquake. Archaeological material remains suggest that the tsunami occurred ~1300 years ago. A bivalve with an age of 5584-5456 cal YBP was buried within the deposit, perhaps long after its death. At Goa Panggung, a cave east of Batu Kalde, fining-upward grain size trends, composition of sediments, and radiocarbon ages suggest the presence of at least one tsunami deposit. A 5040-4864 cal YBP piece of charcoal overlying modern organic matter suggest that the tsunami first scoured the cave floor, reworking existing material and making interpretation difficult. At Adipala, in western Central Java, fining-upward grain size, upward decrease in heavy mineral abundances, and lateral continuity of sand layers revealed the existence of two possible tsunami deposits buried within the sediments in a swale ~1.6 km from the ocean. Age of the deposits is undetermined.
88

New Fullerene Materials Obtained in Solution and by High Pressure High Temperature Treatment

Talyzin, Alexandr January 2001 (has links)
<p>Crystallization of C<sub>60</sub> and C<sub>70</sub> from organic solution often leads to the formation of new solvates and other fullerene compounds. In the present thesis, a number of such solvates were obtained and their phase transitions studied using <i>in situ</i> "in solution" techniques. New fullerene materials can be also obtained using High Pressure High Temperature (HPHT) treatment. The formation of C<sub>60</sub> polymers in thin films and bulk samples has been studied in situ over a wide pressure-temperature range.</p><p>New methods for single-crystal growth of fullerenes and their compounds have been developed. It was found by <i>in situ</i> "in solution" XRD and Raman spectroscopy that solvate C<sub>60</sub> crystals with benzene, toluene and hexane are stable only in equilibrium with their solution. Their melting points coincide with the maximum in the temperature dependence of solubility. C<sub>70</sub> solvates grown from these solutions are stable out of solution, and decompose above the boiling points of the solvents. Vibrational signatures were found for the C<sub>60</sub> and C<sub>70</sub> solvates which are very similar to these for fullerene-sulfur compounds obtained as thin films and single crystals. A new C<sub>70</sub>S<sub>8</sub> compound was obtained as relatively large single crystals. </p><p>C<sub>60</sub> polymerisation under HPHT conditions was studied on thin films and showed a thickness effect on the phase transition around 20 GPa. Superhard and superelastic films were obtained by treatment at 23 GPa and 570K. In situ Raman and XRD studies were performed on bulk samples at pressures up to 27 GPa and temperatures up to 850K. Below 13 GPa, only one- and two-dimensional polymers were found to form during the heating. The observed polymerisation pathway suggests a gradual increase in polymerisation. Above 18 GPa, the <i>in situ</i> Raman spectra obtained during heating remained almost unchanged. The XRD study showed that heating at 830K and 13 GPa leads to the formation of a rhombohedral phase with a volume per C<sub>60</sub> molecule of 560-570 Å<sup>3</sup>/M, which is below the value for two-dimensional polymers. Nevertheless, no superhard, highly dense phases were observed under these conditions, in contrast to previous studies.</p>
89

New Fullerene Materials Obtained in Solution and by High Pressure High Temperature Treatment

Talyzin, Alexandr January 2001 (has links)
Crystallization of C60 and C70 from organic solution often leads to the formation of new solvates and other fullerene compounds. In the present thesis, a number of such solvates were obtained and their phase transitions studied using in situ "in solution" techniques. New fullerene materials can be also obtained using High Pressure High Temperature (HPHT) treatment. The formation of C60 polymers in thin films and bulk samples has been studied in situ over a wide pressure-temperature range. New methods for single-crystal growth of fullerenes and their compounds have been developed. It was found by in situ "in solution" XRD and Raman spectroscopy that solvate C60 crystals with benzene, toluene and hexane are stable only in equilibrium with their solution. Their melting points coincide with the maximum in the temperature dependence of solubility. C70 solvates grown from these solutions are stable out of solution, and decompose above the boiling points of the solvents. Vibrational signatures were found for the C60 and C70 solvates which are very similar to these for fullerene-sulfur compounds obtained as thin films and single crystals. A new C70S8 compound was obtained as relatively large single crystals. C60 polymerisation under HPHT conditions was studied on thin films and showed a thickness effect on the phase transition around 20 GPa. Superhard and superelastic films were obtained by treatment at 23 GPa and 570K. In situ Raman and XRD studies were performed on bulk samples at pressures up to 27 GPa and temperatures up to 850K. Below 13 GPa, only one- and two-dimensional polymers were found to form during the heating. The observed polymerisation pathway suggests a gradual increase in polymerisation. Above 18 GPa, the in situ Raman spectra obtained during heating remained almost unchanged. The XRD study showed that heating at 830K and 13 GPa leads to the formation of a rhombohedral phase with a volume per C60 molecule of 560-570 Å3/M, which is below the value for two-dimensional polymers. Nevertheless, no superhard, highly dense phases were observed under these conditions, in contrast to previous studies.
90

Epitaxy of GaAs-based long-wavelength vertical cavity lasers

Asplund, Carl January 2003 (has links)
Vertical cavity lasers (VCLs) are of great interest aslow-cost, high-performance light sources for fiber-opticcommunication systems. They have a number of advantages overconventional edge-emitting lasers, including low powerconsumption, efficient fiber coupling and wafer scalemanufacturing/testing. For high-speed data transmission overdistances up to a few hundred meters, VCLs (or arrays of VCLs)operating at 850 nm wavelength is today the technology ofchoice. While multimode fibers are successfully used in theseapplications, higher transmission bandwidth and longerdistances require single-mode fibres and longer wavelengths(1.3-1.55 µm). However, long-wavelength VCLs are as yetnot commercially available since no traditional materialssystem offers the required combination of bothhigh-index-contrast distributed Bragg reflectors (DBRs) andhigh-gain active regions. Earlier work on long-wavelength VCLshas therefore focused on hybrid techniques, such as waferfusion between InP-based QWs and AlGaAs DBRs, but more recentlythe main interest in this field has shifted towardsall-epitaxial GaAs-based devices employing novel 1.3-µmactive materials. Among these, strained GaInNAs/GaAs QWs aregenerally considered one of the most promising approaches andhave received a great deal of interest. The aim of this thesis is to investigate monolithicGaAs-based long-wavelength (&gt;1.2 µm) VCLs with InGaAsor GaInNAs QW active regions. Laser structures - or partsthereof - have been grown by metal-organic vapor phase epitaxy(MOVPE) and characterized by various techniques, such ashigh-resolution x-ray diffraction (XRD), photoluminescence(PL), atomic force microscopy, and secondary ion massspectroscopy (SIMS). High accuracy reflectance measurementsrevealed that n-type doping is much more detrimental to theperformance of AlGaAs DBRs than previously anticipated. Asystematic investigation was also made of the deleteriouseffects of buried Al-containing layers, such as AlGaAs DBRs, onthe optical and structural properties of subsequently grownGaInNAs QWs. Both these problems, with their potential bearingon VCL fabrication, are reduced by lowering the DBR growthtemperature. Record-long emission wavelength InGaAs VCLs were fabricatedusing an extensive gain-cavity detuning. The cavity resonancecondition just below 1270 nm wavelength occurs at the farlong-wavelength side of the gain curve. Still, the gain is highenough to yield threshold currents in the low mA-regime and amaximum output power exceeding 1 mW, depending on devicediameter. Direct modulation experiments were performed on1260-nm devices at 10 Gb/s in a back-to-back configuration withopen, symmetric eye diagrams, indicating their potential foruse in high-speed transmission applications. These devices arein compliance with the wavelength requirements of emerging10-Gb/s Ethernet and SONET OC-192 standards and may turn out tobe a viable alternative to GaInNAs VCLs. <b>Keywords:</b>GaInNAs, InGaAs, quantum wells, MOVPE, MOCVD,vertical cavity laser, VCSEL, long-wavelength, epitaxy, XRD,DBR

Page generated in 0.0185 seconds