• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 16
  • 15
  • 14
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Messung der Myonpaarproduktion und ihrer Strahlungskorrekturen mit dem L3-Detektor bei LEP

Roth, Stefan. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 1997--Aachen.
12

Measurement of the shape of the boson rapidity distribution for ρρ̄→Z/γ*→e⁺e⁻+X events produced at √s = 1.96 TeV

Ding, Pengfei January 2014 (has links)
The measurement of the shape of the Z boson rapidity distribution for drell-yan events at a center-of-mass energy of 1.96 TeV is presented in this thesis. Data collected with the D0 detector during the whole RunII period of the Fermilab Tevatron proton-antiproton collider are used. By using these data with an integrated luminosity of up to L = 9.86~$fb^{-1}$, the uncertainties on the rapidity distribution in the forward region are significantly reduced compared with previous measurements. The measurement is made for events with electron-positron mass 66 < M(ee) < 111 GeV. Predictions of Next-to-Leading-Order(NLO) QCD theory with CTEQ and MSTW parton distribution functions (PDFs) are found to agree well with the data over the full rapidity range.
13

Corrections mixtes QCD-EW au niveau NNLO à la production Drell-Yan de bosons Z et W / NNLO mixed QCD-EW corrections to the Drell-Yan production of Z and W bosons

Pan, Zhaoting 25 October 2013 (has links)
La these porte sur les corrections mixtes QCD-EW au niveau NNLO a la productionDrell-Yan de bosons Z et W. Le processus Drell-Yan est un processus fondamentalpermettant de tester avec precision le Modele Standard (MS) de physique des partic-ules au sein de collisionneurs hadroniques, car ce dernier presente une section ecaceimportante, une signature experimentale tres propre, ainsi qu'une tres haute sensi-bilite aux proprietes des bosons de jauge. Pour toutes ces raisons, une prediction theorique precise et able, siginant ici que l'on garde sous contr^ole lestermes provenant des corrections perturbatives d'ordre superieur de la section ecaceet des distributions du mecanisme de production de Drell-Yan, est exigee pour menera bien des etudes de physique au niveau de collisionneurs hadroniques.Dans cette thèse , nous étudions les corrections QCD mixtes - EW à Drell - Yan traite à la NNLO . D'un point de vue technique , le calcul d'un tel ensemble de corrections impliquerait le cal-tion de diagrammes de Feynman très compliquées , La plus grande contribution provient des diagrammes dans lesquels la particule de décomposition ( Z ou boson W ) est presque sur - coquille.En utilisant les règles Cutkosky , nous pouvons ré-écrire l'intégration sur l'espace de phase de latermes d'interférence ( une boucle 2 à 2 diagrammes interféré avec le niveau arbre 2 à 2 etarbre 2 ou 3 diagrammes carré ) en termes de combinaison des intégrales de propagationteurs ayant la prescription et propagateurs de causalité droite avec une face .Ces intégrales peuvent être traités de la même manière que les corrections virtuelles . Cette réduction se fait en utilisant l' algorithme Laporta \ " , sur la base del'intégration par parties identités . Le calcul de l' IM est réalisée en utilisant la méthode de la différenceéquations. En conséquence , nous obtenons l' IM exprimée en série de Laurent ,où D est la dimension de l'espace - temps , la multiplication d'un facteur qui prend entenir compte de la limite souple de l'intégrale en D dimensions . / The thesis concerns the NNLO mixed QCD-EW corrections to the Drell-Yan (DY)production of Z andW bosons, via the following reactions: pp(p) Z+X to l + Xand pp to W + X to l + X. This is a fundamental process for an accurate testof the Standard Model (SM) at hadron colliders, since it has a large cross section, aclean experimental signature. In particular, the Drell-Yan production of Ws is important for an accuratedetermination (via transverse mass and pT distributions) of the W mass, mW, aninput parameter of the model. Because of all these reasons, an accurate and reliable theoretical prediction forthe cross section and the distributions of the Drell-Yan production mechanism, thatmeans control on the higher-order perturbative corrections, is demanded for physicsstudies at hadron colliders. In this thesis, we study the mixed QCD-EW corrections to Drell-Yan processes at the NNLO. From a technical point of view, the calculation of such a set of corrections would involve the calcu-lation of very complicated Feynman diagrams, The biggest contribution comes from the diagrams in which the decaying particle(Z or W boson) is nearly on-shell. Using the Cutkosky rules, we can re-write the integration over the phase-space of theinterference terms (one-loop 2 to 2 diagrams interfered with the tree-level 2 to 2 andtree 2 to 3 diagrams squared) in terms of a combination of integrals with propaga-tors having the right causality prescription and propagators with the opposite one.These integrals can be treated in the same way as the virtual corrections. This reduction is done using the \Laporta Algorithm", based onthe Integration-by-Parts Identities. The calculation of the MIs is performed using the method of differentialequations. As a result, we get the MIs expressed as a Laurent series ,where D is the dimension of the space-time, multiplying a factor which takes intoaccount the soft limit of the integral in D dimensions.
14

Measurement of the Partial Z Decay Width into b Quarks with the L3 Detector at LEP

Kamrad, Dirk 18 May 1999 (has links)
im PostScript-Format
15

Z to tau tau Cross Section Measurement and Liquid-Argon Calorimeter Performance at High Rates at the ATLAS Experiment / Z nach tau tau Wirkungsquerschnittsmessung und Liquid-Argon Kalorimeter Performanz bei hohen Ereignisraten am ATLAS Experiment

Seifert, Frank 08 March 2013 (has links) (PDF)
In this study, a measurement of the production cross section of Standard Model Z bosons in proton-proton collisions in the decay channel Z to tau tau is performed with data of 1.34 fb-1 - 1.55fb-1 recorded by the ATLAS experiment at the LHC at a center-of-mass energy of 7 TeV. An event selection of the data is applied in order to obtain a sample enriched with Z to tau tau events. After background estimations using data and Monte Carlo (MC) simulations, the fiducial cross sections in the sub-channels Z to tau tau to e tau_h + 3nu and Z to tau tau to mu tau_h + 3nu are measured. Together with the geometrical and kinematical acceptance, A_Z, and the well known tau lepton branching fractions, these results are combined to a total inclusive Z to tau tau cross section. A_Z is obtained from MC studies only, and the combination of the channels is done including statistical and systematical uncertainties using the BLUE method. The result is a measured total inclusive cross section of 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. This is in agreement with theoretical predictions from NNLO calculations of 964 plus minus 48 pb and also with measurements previously performed by the ATLAS and CMS experiments. With the increased amount of data, the statistical uncertainty could be reduced significantly compared to previous measurements. Furthermore, a testbeam analysis is performed to study the operation of the electromagnetic and hadronic endcap calorimeters, EMEC and HEC, and of the forward calorimeter, FCal, in the high particle fluxes expected for the upgraded LHC. The high voltage return currents of the EMEC module are analysed in dependence of the beam intensity. The results are compared to model predictions and simulations to extract the point of critical operation. Overall, the results for the critical beam intensities and the critical high voltage currents are in agreement with the predictions, but the assigned uncertainties are rather large. The general behaviour of the high voltage current in dependence of the beam intensity above the critical intensity could be confirmed very well. The testbeam data show that the EMEC can be operated up to highest LHC luminosities, and that ATLAS conserves its excellent calorimeter performance in this detector area. / In dieser Studie wird eine Wirkungsquerschnittsmessung des Standardmodell-Z-Bosons im Zerfallskanal Z nach tau tau mit Kollisionsereignissen entsprechend 1.34 fb-1 bis 1.55 fb-1 aufgezeichneter Daten des ATLAS-Experiments am LHC bei einer Schwerpunktsenergie von 7 TeV durchgefuehrt. Hierbei kommt eine spezielle Ereignisselektion der Daten zum Einsatz, die zum Ziel hat, einen mit Z nach tau tau Ereignissen angereicherten Datensatz zu erhalten. Nach einer Untergrundabschaetzung mit Hilfe von experimentellen Daten und Monte-Carlo(MC)-Simulationen wird eine spezifische Wirkungsquerschnittsmessung in den Unterkanaelen Z nach tau tau nach e tau_h + 3nu und Z nach tau tau nach mu tau_h + 3nu erreicht, welche zunaechst nur Ereignisse in der geometrischen und kinematischen Akzeptanzregion umfasst. Zusammen mit der Selektionseffizienz dieser Akzeptanzregion, A_Z, und den bekannten Tau-Lepton-Verzweigungsverhaeltnissen koennen diese Ergebnisse zu einem totalen, inklusiven Z nach tau tau Wirkungsquerschnitt kombiniert werden. Hierbei wird A_Z ausschliesslich aus MC-Studien bestimmt und die Kombination unter Beruecksichtigung der statistischen und systematischen Fehler der Einzelkanaele mit der BLUE-Methode durchgefuehrt. Das Ergebnis ist ein totaler, inklusiver Wirkungsquerschnitt von 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. Dies stimmt innerhalb der Messunsicherheiten sowohl mit theoretischen Vorhersagen aus NNLO Rechnungen von: 964 plus minus 48 pb als auch mit Messungen, die zuvor im Zuge der ATLAS- und CMS-Experimente durchgefuehrt wurden, ueberein. Im Vergleich zu den bisherigen Messungen koennen die statistischen Fehler mit dem groesseren Datensatz deutlich reduziert werden. Weiterhin wird eine Teststrahlstudie zur Pruefung der Funktionalitaet der elektromagnetischen und hadronischen Endkappenkalorimeter, EMEC und HEC, und des Vorwaertskalorimeters FCal in den zukuenftigen, hohen Teilchenflussdichten des verbesserten LHC praesentiert. Die Hochspannungsstroeme des EMEC-Moduls werden in Abhaengigkeit von der Strahlintensitaet analysiert. Weiterhin werden die Ergebnisse mit Modellvorhersagen und Simulationen verglichen, um die Punkte nichtlinearen (kritischen) Betriebes zu extrahieren. Die Ergebnisse fuer die kritische Strahlintensitaet und die kritischen Stroeme stimmen mit Modellrechnungen und Simulationen ueberein, die jedoch mit grossen Unsicherheiten behaftet sind. Das vorhergesagte Verhalten der Hochspannungsstroeme in Abhaengigkeit von der Strahlintensitaet oberhalb der kritischen Intensitaet konnte sehr genau bestaetigt werden. Die Teststrahldaten zeigen, dass das EMEC bis zu den hoechsten LHC-Luminositaeten arbeiten kann und ATLAS in dieser Detektorregion seine exzellenten Kalorimetereigenschaften beibehaelt.
16

Kvarkar : upptäckt och återupptäckt / Quarks: discovery and rediscovery

Östlund, Stina January 2017 (has links)
Only a small part of particle physics is mentioned in the physics courses for Swedish high school students, despite the fact that particle physics is a field where a lot of research and progress are being done today. The first two physics courses in Swedish high schools include an overview of the standard model and the particles and interactions within the model. By designing an experiment where students get to use data from the ATLAS experiment in CERN they not only get to learn more about particle physics, they also get the opportunity to learn how to work similar to how researchers work in this field. This project was inspired by the Hands-on-CERN project which is focusing on increasing high school students interest and understanding of particle physics. By imitating Hands-on-CERN’s way of working, an experiment for high school students has been designed. In the experiment students get to discover the existence of quarks, even though they can not be observed as free particles but only in bounded states; so called hadrons. By analyzing data from the ATLAS experiment of the decay of the Z boson, you get to the conclusion that the Z boson more often decay to hadrons than to leptons with a proportion of about 14:71. This proportion depends on the various possibilities of hadrons that the Z boson can decay to, depending on the inner structure of hadrons consisting of quarks, dissimilar to the leptons which have no inner structure. / I fysikkurserna på gymnasiet ingår endast en liten del av partikelfysiken, trots att det är ett område som är väldigt aktuell inom forskning. I Fysik 1 och 2 ingår en översiktlig orientering om standardmodellen och de partiklar och interaktioner som ingår i modellen. Genom att utforma en laboration där eleverna får använda sig av data från ATLAS-experimentet på CERN får de både möjligheten att lära sig mer om partikelfysik och prova att arbeta på ett sätt som liknar forskarnas arbetssätt. Inspiration till arbetet har hämtats från projektet Hands-on-CERN som inriktar sig på att öka gymnasieelevers intresse och kunskaper inom partikelfysik. Genom att efterlikna Hands-on-CERNs sätt att arbeta har en laboration lämplig för gymnasieelever utformats. I laborationen får eleverna möjlighet att upptäcka att kvarkar finns trots att de inte går att observera i fria tillstånd, utan endast i bundna tillstånd; så kallade hadroner. Data från Z-bosonens sönderfall hämtas från ATLAS-experimentet i CERN analyseras, från vilken man kan dra slutsatsen att Z-bosonen sönderfaller oftare till hadroner än till leptoner, ett förhållande på ungefär 14:71. Förhållandet beror på att det finns fler möjliga hadroner som Z- bosonen kan sönderfalla till, vilket i sin tur beror på hadronernas inre struktur bestående av kvarkar, till skillnad från leptonerna som saknar inre struktur.
17

A Cross Section Measurement Of Events With Two Muons At The $Z^{0}$ Resonance And At Least One Heavy Flavour Jet At The ATLAS Experiment Of The Large Hadron Collider

Steinbach, Peter 16 July 2012 (has links)
In 2010, the Large Hadron Collider (\\lhc{}) at the European Organisation for Nuclear Research (CERN) near Geneva (Switzerland) came into full operation providing proton-proton collisions at a centre-of-mass energy of $\\sqrt{s} = \\unit[7]{TeV}$. \\lhc{} data may allow the observation of the Higgs boson, the last unknown building block of the standard model of particle physics (SM). Di-muon final states containing heavy flavour jets pose an irreducible background for searches of the Higgs boson as predicted the SM or theories beyond. They also provide a unique testbed for tests of perturbative Quantum Chromo-Dynamics (pQCD). This thesis provides a measurement of the cross section of events with one di-muon pair with an invariant mass in the \\Z{} mass region and at least one heavy flavour jet. Studies on acceptance and systematic effects of the experimental setup are presented as well as a comparison to theoretical predictions. The total inclusive cross section of \\zbFS{} events was observed as $\\sigma(\\mu^{+}\\mu^{-}+b+X) = \\unit[(4.15 ^{+0.97}_{-0.89} (stat.) ^{+0.45}_{-0.53} (syst.))]{pb} $ from the equivalent of $\\unit[36]{pb^{-1}}$ of data. Agreement with pQCD predictions at next-to leading order (NLO) is found while tensions with leading order (LO) predictions are observed. Further, the cross-section ratio \\RwZ{} with events containing two muons and at least one jet of any origin was measured to $\\mathcal{R} = \\unit[4.6 ^{+1.4}_{-1.2} (stat.) \\pm 0.5 (syst.)]{\\%}$. This is found to agree with NLO and LO calculations within known uncertainties.
18

Z to tau tau Cross Section Measurement and Liquid-Argon Calorimeter Performance at High Rates at the ATLAS Experiment

Seifert, Frank 10 January 2013 (has links)
In this study, a measurement of the production cross section of Standard Model Z bosons in proton-proton collisions in the decay channel Z to tau tau is performed with data of 1.34 fb-1 - 1.55fb-1 recorded by the ATLAS experiment at the LHC at a center-of-mass energy of 7 TeV. An event selection of the data is applied in order to obtain a sample enriched with Z to tau tau events. After background estimations using data and Monte Carlo (MC) simulations, the fiducial cross sections in the sub-channels Z to tau tau to e tau_h + 3nu and Z to tau tau to mu tau_h + 3nu are measured. Together with the geometrical and kinematical acceptance, A_Z, and the well known tau lepton branching fractions, these results are combined to a total inclusive Z to tau tau cross section. A_Z is obtained from MC studies only, and the combination of the channels is done including statistical and systematical uncertainties using the BLUE method. The result is a measured total inclusive cross section of 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. This is in agreement with theoretical predictions from NNLO calculations of 964 plus minus 48 pb and also with measurements previously performed by the ATLAS and CMS experiments. With the increased amount of data, the statistical uncertainty could be reduced significantly compared to previous measurements. Furthermore, a testbeam analysis is performed to study the operation of the electromagnetic and hadronic endcap calorimeters, EMEC and HEC, and of the forward calorimeter, FCal, in the high particle fluxes expected for the upgraded LHC. The high voltage return currents of the EMEC module are analysed in dependence of the beam intensity. The results are compared to model predictions and simulations to extract the point of critical operation. Overall, the results for the critical beam intensities and the critical high voltage currents are in agreement with the predictions, but the assigned uncertainties are rather large. The general behaviour of the high voltage current in dependence of the beam intensity above the critical intensity could be confirmed very well. The testbeam data show that the EMEC can be operated up to highest LHC luminosities, and that ATLAS conserves its excellent calorimeter performance in this detector area.:Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24 2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29 2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34 3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42 3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55 4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55 4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58 4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61 4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62 4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63 4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65 4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67 4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72 4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80 5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89 5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89 5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90 5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92 5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106 5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108 5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110 5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112 5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112 5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112 5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115 6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123 B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 / In dieser Studie wird eine Wirkungsquerschnittsmessung des Standardmodell-Z-Bosons im Zerfallskanal Z nach tau tau mit Kollisionsereignissen entsprechend 1.34 fb-1 bis 1.55 fb-1 aufgezeichneter Daten des ATLAS-Experiments am LHC bei einer Schwerpunktsenergie von 7 TeV durchgefuehrt. Hierbei kommt eine spezielle Ereignisselektion der Daten zum Einsatz, die zum Ziel hat, einen mit Z nach tau tau Ereignissen angereicherten Datensatz zu erhalten. Nach einer Untergrundabschaetzung mit Hilfe von experimentellen Daten und Monte-Carlo(MC)-Simulationen wird eine spezifische Wirkungsquerschnittsmessung in den Unterkanaelen Z nach tau tau nach e tau_h + 3nu und Z nach tau tau nach mu tau_h + 3nu erreicht, welche zunaechst nur Ereignisse in der geometrischen und kinematischen Akzeptanzregion umfasst. Zusammen mit der Selektionseffizienz dieser Akzeptanzregion, A_Z, und den bekannten Tau-Lepton-Verzweigungsverhaeltnissen koennen diese Ergebnisse zu einem totalen, inklusiven Z nach tau tau Wirkungsquerschnitt kombiniert werden. Hierbei wird A_Z ausschliesslich aus MC-Studien bestimmt und die Kombination unter Beruecksichtigung der statistischen und systematischen Fehler der Einzelkanaele mit der BLUE-Methode durchgefuehrt. Das Ergebnis ist ein totaler, inklusiver Wirkungsquerschnitt von 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. Dies stimmt innerhalb der Messunsicherheiten sowohl mit theoretischen Vorhersagen aus NNLO Rechnungen von: 964 plus minus 48 pb als auch mit Messungen, die zuvor im Zuge der ATLAS- und CMS-Experimente durchgefuehrt wurden, ueberein. Im Vergleich zu den bisherigen Messungen koennen die statistischen Fehler mit dem groesseren Datensatz deutlich reduziert werden. Weiterhin wird eine Teststrahlstudie zur Pruefung der Funktionalitaet der elektromagnetischen und hadronischen Endkappenkalorimeter, EMEC und HEC, und des Vorwaertskalorimeters FCal in den zukuenftigen, hohen Teilchenflussdichten des verbesserten LHC praesentiert. Die Hochspannungsstroeme des EMEC-Moduls werden in Abhaengigkeit von der Strahlintensitaet analysiert. Weiterhin werden die Ergebnisse mit Modellvorhersagen und Simulationen verglichen, um die Punkte nichtlinearen (kritischen) Betriebes zu extrahieren. Die Ergebnisse fuer die kritische Strahlintensitaet und die kritischen Stroeme stimmen mit Modellrechnungen und Simulationen ueberein, die jedoch mit grossen Unsicherheiten behaftet sind. Das vorhergesagte Verhalten der Hochspannungsstroeme in Abhaengigkeit von der Strahlintensitaet oberhalb der kritischen Intensitaet konnte sehr genau bestaetigt werden. Die Teststrahldaten zeigen, dass das EMEC bis zu den hoechsten LHC-Luminositaeten arbeiten kann und ATLAS in dieser Detektorregion seine exzellenten Kalorimetereigenschaften beibehaelt.:Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24 2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29 2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34 3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42 3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55 4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55 4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58 4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61 4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62 4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63 4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65 4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67 4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72 4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80 5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89 5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89 5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90 5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92 5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106 5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108 5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110 5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112 5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112 5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112 5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115 6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123 B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
19

Mesure du rapport des sections efficaces des bosons W et Z produits en association avec un jet dans les collisions proton-proton a √ s=7 TeV avec le detcteur ATLAS / Measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at √ s=7 TeV with ATLAS

Xu, Chao 05 June 2012 (has links)
Dans cette thèse la mesure du rapport des sections efficaces de production de bosons W et Z en association avec un jet au LHC est effectuée.Le rapport des sections efficaces est mesuré à l'aide des données issues de collisions proton-proton au LHC à une énergie dans le centre de masse de 7 TeV, recueillies par l'expérience ATLAS en 2010, correspondant à une luminosité intégrée d'environ 40 pb-1. L'analyse est effectuée à l’aide de bosons W et Z se désintégrant dans le canal muon.Il s'agit de la première mesure du rapport des taux de production de bosons W et Z associés à un jet réalisée à une si haute énergie dans le centre de masse, la mesure est la également la première effectuée au LHC. Cette mesure constitue un test très important des calculs théoriques perturbatifs et tire avantage des annulations partielles ou totales de diverses incertitudes expérimentales.La mesure sert aussi pour les recherches de nouveaux phénomènes de physique au LHC à contraindre les bruits de fonds ayant les mêmes signatures topologiques.La valeur du rapport de mesuré est présentée en fonction de différents seuils d’impulsion transverse de jet cumulatifs et est trouvé, a l’intérieur de la précision statistique, en bon accord avec prédictions pertubatives de QCD aux LO et NLO. / In this thesis an investigation of the ratio of the production cross section of W and Z bosons in association with one jet at LHC is performed.The cross-section ratio is measured with LHC proton-proton collision data at a center-of-mass energy of 7 TeV, collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 40 pb-1. The analysis is performed selecting W and Z bosons decaying in the muon channel.It is the first time the ratio of W and Z bosons production associated with one jet is measured at such a high center-of-mass energy, the measurement is the first one at the LHC. This measurement constitutes a very important test of perturbative theoretical calculations based on the advantage of the partial and full cancellations of various uncertainties.It also serves as constraining backgrounds with similar topological signatures in the search for new physics phenomena at the LHC. The measured ratio value is presented as a function of cumulative jet transverse momentum thresholds and found, within statistical precision, to agree well with perturbative LO and NLO QCD predictions.
20

Messung der Reaktion e+ e- -] ZZ -] qq̄l+ l_hn- mit dem L3-Detektor bei LEP

Weber, Martin. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.

Page generated in 0.0305 seconds