• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-line sensing of cereal crop biomass

Hammen, Volker Carsten 16 August 2001 (has links)
Der maschinengestützte Pflanzenmassesensor "Pendulum-Meter" kann online die teilflächenspezifischen Differenzierung der Bestandesfrischmassen und -trockenmassen der meisten Wachstumsstadien von Winterweizen, Winterroggen und Naßreis bestimmen. Das Pendulum-Meter ist in Weizen und Roggen sehr gut geeignet für die Stadien BBCH 39 bis 69, und mit geringerer Genauigkeit auch für die Stadien BBCH 32 bis 34. In Naßreis wurde die Biomasse in allen getesteten Wachstumsstadien von BBCH 25 bis BBCH 65 gut erfaßt. In früheren Wachstumsstadien ist eine Messung nicht möglich. Die Kraft-Winkel-Beziehung des Sensors ist nicht linear. Der wichtigste Faktor für diese Kontaktmessung ist der Biegewiderstand der Getreidehalme. Zur Reduzierung der Rohdaten zu repräsentativen Werten für die Parzellen sind sowohl der Mittelwert des Auslenkungswinkels und der Mittelwert des Vektors, als auch der Median des Auslenkungswinkels geeignet. Die Ergebnisse der Optimierungsversuche in bezug auf die Wiederholgenauigkeit der Meßwerte und die Abbildungsgenauigkeit der Pflanzenmasse zeigten eine große Bandbreite von geeigneten Einstellungsparametern und keine einzelnen optimalen Parameter. Trotzdem sollte die Pendelmasse mP niedrig sein, um eine Zerstörung einiger Pflanzen zu vermeiden. Die Höhe des Zylinderkörpers hA0 sollte die Halme berühren, um den Biegekontakt sicherzustellen. Und die Drehpunkthöhe hP sollte in Bestandeshöhe sein, um eine größtmögliche Bandbreite an Auslenkwinkeln für eine gegebene Biomasse zu erhalten. Die optimalen Einstellungen für hP, hA0, und mP sind in jedem Wachstumsstadium anders, aber eine einzige Pendeleinstellung für alle Wachstumsstadien ist möglich, jedoch läßt sie in vielen Wachstumsstadien eine gute Genauigkeit der Biomassebestimmung vermissen. Ohne Kalibrierung ermittelt das "Pendelum-Meter" immer noch gut die relative Verteilung der teilflächenspezifischen Biomasse, also der Heterogenität des Feldes. Wenn nur die Bestandesheterogenität von Interesse ist, können alle Pendeleinstellungen ohne Kalibrierung benutzt werden. Die Meßwiederholungen mit derselben Parametereinstellung zeigte eine Standardabweichung der Parzellenmittelwerte von weniger als 1°, in den meisten Fällen geringer als 0.3° für die meisten Wachstumsstadien. Der Variationskoeffizient ist für die meisten Einstellungsparameter geringer als 5 %, oft kleiner als 2 %, und er ist größer je kleiner die Bandbreite des gemessenen Winkels ist. Die Genauigkeit der Pflanzenmassebestimmung durch das Pendulum-Meter ist durch Bestimmtheitsmaße von 0.90 oder höher gekennzeichnet. Die lineare Abbildung zeigte dabei geringfügig niedrigere R2 als die quadratische, außer in Roggen, wo in den späteren Wachstumsstadien die Pflanzenmasse wesentlich besser quadratisch darstellt wurde. Auch zeigten die geplotteten Residuen dieser Regression allein im Roggen eine Verfälschung durch einen quadratischen Einfluß. Die Standardfehler dieser Regressionen zur Abbildung der Biomasse waren in der Regel geringer als 2 in Naßreis, geringer als 3 in Winterweizen, und geringer als 4 in Winterroggen, und mit dem Bestandeswachstum zunehmend. Die multiple und einfache Regression der Abhängigkeit der Meßwerte von den Parametereinstellungen des Sensors wurde stark von der Pflanzenmasse der Parzellen beeinflußt, weshalb eine Kalibrierung notwendig ist, wenn die Einstellungsparameter geändert werden. Die Geländeneigung lenkt das Pendel aus, ohne einen Getreidebestand zu messen, und benötigt eine Korrektur durch einen Neigungssensor. Die Fahrgeschwindigkeit muß konstant gehalten werden, da der gemessene Auslenkwinkel eine starke Abhängigkeit von der Geschwindigkeit zeigt, aber gleichzeitig auch von der Menge der Pflanzenmasse. Der Biomassesensor kann die Bestandesdichte bestimmen, wenn die Bestandeshöhe homogen ist, und bestimmt die Bestandeshöhe, wenn die Bestandesdichte konstant ist. Wind mit niedriger Geschwindigkeit ist verfälscht die Biomassemeßwerte nicht meßbar, aber bei höheren Windgeschwindigkeiten wird der Fehler größer. Weitere verfälschende Faktoren sind Unkräuter, das tägliche Pflanzenwachstum, die Neigung des Halmes, Vertiefungen der Fahrgasse, verschiedene Sorten, die eine Eichung des Biomassesensors unter den meisten Umständen notwendig machen. Die Genauigkeit des Meßprinzips wurde mit einem Geräteträger ermittelt, der seine Ausrichtung gegenüber dem Erdboden nicht veränderte, aber ein Traktor kann die Messungen durch seine Eigenbewegung verfälschen. Die Messungen des Biomassesensors können als Entscheidungsbasis zur teilflächenspezifischen Applikation von Wachstumsregeln und Fungiziden dienen, wenn auch die Entscheidungskriterien noch erarbeitet werden müssen. Teilflächenspezifische Applikationen von Wachstumsreglern und Fungiziden nach den Messungen des Pendulum-Meters, also nach der Pflanzenmasse, sind erfolgreich durchgeführt worden. Die Messungen des Pendulum-Meters können dabei als Entscheidungsbasis für die teilflächenspezifische Applikation von Wachstumsreglern und Fungiziden benutzt werden, obwohl die Beziehung zwischen Lager und Pflanzenmasse, und zwischen den meisten Schadpilzen und der Biomasse weitere Untersuchungen erfordert, genauso wie die Ermittlung der notwendigen Aufwandmenge an Wachstumsreglern und Fungiziden je nach Pflanzenmasse. Der Biomassesensor Pendulum-Meter ist für Kontrolle der mittleren und späten Applikationen von Wachstumsreglern und Fungiziden geeignet, hier die Stadien BBCH 32 - 59, aber nicht für die frühen Applikationen, hier die Stadien BBCH 25 - 31, wegen der fehlenden Eignung den Sensor in niedrigem Pflanzenbestand zu benutzen. In der Fungizidapplikation kann der Sensor ähnlich den LAI-Meßgeräten benutzt werden, und in der Ausbringung von Wachstumsreglern hat der Sensor eine große Gemeinsamkeit mit dem Widerstand gegen das Lagern. / The machine-based biomass sensor pendulum-meter can determine on-line the site-specific differentiation of cereal crop fresh masses and dry masses for the most growth-stages in winter wheat, winter rye, and irrigated rice. The pendulum-meter is well suited in wheat and rye for the growth-stages BBCH 39 to BBCH 69, and to a lesser degree for BBCH 34 and 32. Irrigated rice crop biomass was well sensed by the pendulum-meter at all tested growth-stages BBCH 25 to BBCH 65. Earlier growth-stages were not possible to measure. The angle-force relation of the pendulum-meter is non-linear. The most important factor for this contact measurement was found in the bending moment of resistance of the stems. For the reduction of the original data to representative plot values, the average of the angle, the average of the vector, and the median of the angle were suitable. The results of the optimisation trials, in terms of repeatability of the measurement and the accuracy of biomass determination, showed a wide range of suitable parameter settings and not a single optimal parameter. Nevertheless, the mass of the pendulum mP should be low to avoid destruction of the plants, the height of the cylindrical body hA0 should touch the stems to ensure bending contact, and the height of the pivot point hP should be at crop height to get a wide range of angles of deviation for a given range of biomass. For every growth-stage, the optimum hP, hA0, and mP are different, and although a single pendulum-meter setting for all growth-stages is possible, but lacking good accuracy of biomass determination in many growth-stages. Without calibration the pendulum-meter still senses well the relative distribution of the site-specific biomass, hence the field heterogeneity. When only the crop's heterogeneity is of interest, all pendulum settings can be used without calibration. The replicates with the same pendulum parameter settings show a standard deviation of the plot average of less than 1°, mostly less than 0.3° for the most growth-stages. The coefficient of variation is mostly less than 5 %, often less than 2 %, and it is higher the smaller the range of measured angles is. The accuracy of biomass determination of the pendulum-meter showed mostly R2 of 0.90 or higher. The linear regression performed with slightly lower R2 than the square, except for rye, where the square regression was much better for the late growth-stages. Solely in rye the plotted residuals showed a square bias. The standard errors of the regressions were less than 2 in rice, less than 3 in wheat, and less than 4 in rye, increasing during crop growth. The multiple and simple regression for the dependency of the measured angle on the parameter settings of the pendulum was strongly influenced by the biomass thus causing a re-calibration when changing the pendulum parameters. The slope of the terrain is deviating the pendulum-meter without crop and needed a correction by a slope sensor. The carrier speed has to be constant, and the angle of deviation is highly dependent on the carrier speed, but simultaneously dependent on the amount of biomass. The biomass sensor senses the tiller density, when the plant height is homogeneous, and the plant height when the tiller density is constant. Wind at low speeds is not a biasing factor, but at high wind speeds the bias will increase. Further biasing factors can be weeds, daily plant growth, stem inclination, tramline depth, and variety, thus requiring a re-calibration of the biomass sensor under most conditions. The accuracy of the measurement principle was determined with a carrier that was not changing its orientation towards the soil surface, but a tractor might bias the measurements because of its own movement. Site-specific application of growth-regulators and fungicides according to the measurements of the pendulum-meter, and hence the biomass, has been successfully conducted. The measurements of the pendulum-meter can be used as a decision base for the site-specific application of growth-regulators and fungicides, although the relationship between lodging and biomass, and between most fungi and biomass needs further examination, as well as determining the necessary amount of growth-regulators and fungicides according to biomass. The biomass sensor pendulum-meter is suitable for controlling the intermediate and late applications of growth-regulators and fungicides, here BBCH 32 - 59, but not for the early applications, here BBCH 25 - 31, due to impossibility of using the sensor in low plants. In fungicide application, the sensor can be used similar to LAI, and in growth-regulators sprayings, the sensor has in principle a high similarity with lodging resistance.
2

Managing phenology for agronomic adaptation of global cropping systems to climate change

Minoli, Sara 27 November 2020 (has links)
Der Klimawandel fordert die Anbausysteme heraus, um das derzeitige Produktionsniveau zu verbessern oder sogar aufrechtzuerhalten. Es wird erwartet, dass zukünftige Trends bei Temperatur und Niederschlag die Ernteproduktivität beeinträchtigen. Es ist daher notwendig, möglicher Lösungen zur Anpassung der Anbausysteme an den Klimawandel zu untersuchen. Ziel dieser Arbeit ist es, das Wissen über die Anpassung von weltweit relevanten Getreidepflanzen an den Klimawandel zu erweitern. Die zentrale Fragestellung ist, ob globale Anbausysteme an den Klimawandel angepasst werden können, indem die Phänologie der Kulturpflanzen durch Anpassung von Wachstumsperioden und Sorten gesteuert wird. Die Phänologie und die Ertragsreaktionen sowohl auf den Temperaturanstieg als auch auf die Sortenselektion werden zunächst anhand eines Ensembles von “Global Gridded Crop Models” bewertet. Anschließend wird die Komplexität der Anpassung durch phänologisches Management analysiert, insbesondere unter Berücksichtigung der bestehenden großen Wissenslücken bei der Auswahl von Pflanzensorten. Das Ergebnis der Analyse ist ein regelbasierter Algorithmus, der phänologische Zyklen der Kulturpflanzen auswählt, um die Zeit für die Ertragsbildung zu maximieren und Temperatur- und Wasserbelastungen während der Wachstumszyklen der Kulturpflanzen zu minimieren. Die berechneten Aussaatdaten und Wachstumsperioden werden verwendet, um globale Muster von Sorten zu parametrisieren, die an aktuelle und zukünftige Klimaszenarien angepasst sind. Diese Arbeit zeigt, dass die Auswirkungen des Klimawandels auf die Pflanzenproduktivität erheblich variieren können, je nachdem, welche Annahmen für das agronomische Management getroffen werden. Änderungen im Management zu vernachlässigen, liefert die pessimistischste Prognose für die zukünftige Pflanzenproduktion. Relativ einfache Ansätze zur Berechnung angepasster Aussaatdaten und Sorten bieten eine Grundlage für die Berücksichtigung autonomer Anpassungsschemata als integraler Bestandteil globaler Modellierungsrahmen. / Climate change is challenging cropping systems to enhance or even maintain current production levels. Future trends in temperature and precipitation are expected to negatively impact crop productivity. It is therefore necessary to explore adaptation options of cropping systems to changing climate. The aim of this thesis is to advance knowledge on adaptation of world-wide relevant grain crops to climate change. The central research question is whether global cropping systems can be adapted to climate change by managing crop phenology through adjusting growing periods and cultivars. Phenology and yield responses to both temperature increase and cultivar selection are first assessed making use of an ensemble of Global Gridded Crop Models. Then, the complexity of adaptation through phenological management is analysed, particularly addressing the existing large knowledge gaps on crop cultivar choice. The outcome of the analysis is a rule-based algorithm that selects crop phenological cycles aiming at maximizing the time for yield formation and minimizing temperature and water stresses during the crop growth cycles. The computed sowing dates and growing periods are used to parametrize global patterns of cultivars adapted to present and future climate scenarios. This thesis demonstrates that the impacts of climate change on crop productivity can vary substantially depending on which assumptions are made on agronomic management. Neglecting any changes in management return the most pessimistic projection on future crop production. Relatively simple approaches to compute adapted sowing dates and cultivars provide a base for considering autonomous adaptation schemes as an integral component of global scale modelling frameworks.
3

Cereal grain yield responses to fertilizer management in sandy soil in a long-term fertilizer experiment in Northeast Germany

Thai, Thi Huyen 15 September 2023 (has links)
Langzeitdüngungsversuche (LTFE) sind für die Agrarforschung von entscheidender Bedeutung, da sie dokumentieren, überwachen, lernen und zeigen können, was in der Vergangenheit geschehen ist, und mit Hilfe von Vorhersagemodellen vorhersagen und simulieren können, was in Zukunft geschehen wird. Diese Modelle dienen dazu, zukünftiges Pflanzenwachstum unter verschiedenen Klima- und Bewirtschaftungsszenarien abzuschätzen und so Entscheidungsprozesse zu unterstützen. In diese Studie wurden die Reaktionen der Getreideerträge auf das Düngermanagement in Sandböden in einem LTFE (1971 bis 2016) in Nordostdeutschland analysiert. Die Ziele dieser Studie waren a) die Analyse der Ertragsreaktionen von Sommergerste, Winterroggen und Winterweizen auf das Düngemanagement, b) die Analyse der Sensitivität der Ertragsreaktionen auf den Zeitpunkt von Wetterereignissen und c) der Vergleich verschiedener Analysemodelle. Die Studie ergab, dass die Reaktion der Getreideerträge auf das Düngermanagement von komplexen Beziehungen zwischen Klimaabhängigkeit, Vorfrucht und Bodeneigenschaften beeinflusst wurde. Die Witterungsbedingungen bei der Aussaat und in den frühen Wachstumsstadien des Getreides beeinflusste den Kornertrag. Bei Wintergetreide waren die Intensität und Dauer der extremen Temperaturen im Sommer, insbesondere die Anzahl der Tage mit einer Höchsttemperatur von über 30°C im Juli, eine wichtige Variable für den Ertrag. Unter den untersuchten Modellen zeigte das LMM-Modell eine bessere Vorhersageleistung als das M5P-Modell, und beide hatten umfangreichere Regressoren als die ANOVA und die BMA. Das M5P-Modell bot eine intuitive Visualisierung wichtiger Variablen und ihrer kritischen Schwellenwerte und offenbarte andere Variablen, die vom LMM-Modell nicht erfasst wurden. Die Ergebnisse dieser Analyse tragen zu umfassenden Strategien für eine nachhaltige Pflanzenproduktion im Hinblick auf den zukünftigen Klimawandel bei. / Long-term fertilizer experiments (LTFEs) are essential for agricultural research as they provide necessary information and data to build predictive models. These models can be used to estimate future plant growth under different climate and management scenarios to support decision-making processes. The current study analyzed cereal grain yield responses to fertilizer management in sandy soil in a LTFE (1971 to 2016) in Northeast Germany. The objectives of this study were to a) analyze yield responses of spring barley), winter rye, and winter wheat to fertilizer management, b) analyze the sensitivity of yield responses to timing of weather events, and c) compare different analysis models. The study revealed that cereal yield response to fertilizer management was influenced by complex relationships among climatic dependence, preceding crop, and soil characteristics. Weather conditions at seeding and early growth stages of cereal were found to be sensitive to grain yield. For winter cereals, the intensity and duration of extreme temperatures in the summertime (harvest year), especially the number of days recorded with a maximum temperature above 30°C in July was an important variable for the yield. Among the investigated models, LMM-model had a better predictive performance compared to M5P-model and both had richer regressors than the ANOVA and BMA-model. The M5P-model presented an intuitive visualization of important variables and their critical thresholds, and revealed other variables that were not captured by the LMM-model. The findings of this analysis contribute to comprehensive strategies for sustainable crop production with regard to future climate change.

Page generated in 0.0143 seconds