• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intracellular polymer network as source od cell motility

Fuhs, Thomas 25 September 2013 (has links) (PDF)
Cell motility has been found to play a role in many important body functions as well as the embryogenenis of mulitcellular organisms like vertebrates. From a physics point of view the interesting questions behind every motion are: Why is it moving? Where do the forces come from? Today we know that the motility of many cells is dependent on an active polymer network. Actin, one of the most abundant proteins in the body, is constantly polymerized, being moved around and depolymerized in motile cells. Until now, only forces outside the cell like traction forces could be measured. The direct measurement of the force generated by polymerizing actin filaments has only been measured by our lab and the lab of M. Radmacher. In these measurements fish keratocytes were used. Whereas I did these experiments, for the first time, on mammalian cells. To measure forward forces on neuronal growth cones I stabilized the SFM, as measurement times went up from minutes to hours. Furthermore measurements had to be performed at 37°C instead of room temerature, this induced drifts of the substrate. I incorporated an optical trap into the microscope to track the motion of the substrate. A feedback loop moved the SFM cantilever to minimize relative motion of substrate and cantilever. For keratocytes I directly measured the forces produced by actin polymerization and, to my knowledge for the first time, the forces associated with the retrograde actin flow using a SFM. The result was that both actin and myosin play important but different roles in motility. For actin it turned out that considering just the polymerization was not enough. Actin depolymerization and the resulting entropic forces are a completely new physical effect in actin based cell motility. With this new force in the force balance I can explain all effects observed in my experiments without introducing any new biochemical feedback loops. Finally I showed that neuronal growth cones are very soft and weak structures. They are at least one order of magnitude softer and weaker as for example fibroblasts or cells forming the blood vessel walls. As neurons are usually located in soft environments this does not impede their normal outgrowth. It could even serve as a safety mechanism that prevents cell from growing into wrong areas like breaching the blood-brain-barrier, on a physical level. For a neuron the wall of a blood vessel feels like a brick wall for us.
2

Intracellular polymer network as source od cell motility

Fuhs, Thomas 16 September 2013 (has links)
Cell motility has been found to play a role in many important body functions as well as the embryogenenis of mulitcellular organisms like vertebrates. From a physics point of view the interesting questions behind every motion are: Why is it moving? Where do the forces come from? Today we know that the motility of many cells is dependent on an active polymer network. Actin, one of the most abundant proteins in the body, is constantly polymerized, being moved around and depolymerized in motile cells. Until now, only forces outside the cell like traction forces could be measured. The direct measurement of the force generated by polymerizing actin filaments has only been measured by our lab and the lab of M. Radmacher. In these measurements fish keratocytes were used. Whereas I did these experiments, for the first time, on mammalian cells. To measure forward forces on neuronal growth cones I stabilized the SFM, as measurement times went up from minutes to hours. Furthermore measurements had to be performed at 37°C instead of room temerature, this induced drifts of the substrate. I incorporated an optical trap into the microscope to track the motion of the substrate. A feedback loop moved the SFM cantilever to minimize relative motion of substrate and cantilever. For keratocytes I directly measured the forces produced by actin polymerization and, to my knowledge for the first time, the forces associated with the retrograde actin flow using a SFM. The result was that both actin and myosin play important but different roles in motility. For actin it turned out that considering just the polymerization was not enough. Actin depolymerization and the resulting entropic forces are a completely new physical effect in actin based cell motility. With this new force in the force balance I can explain all effects observed in my experiments without introducing any new biochemical feedback loops. Finally I showed that neuronal growth cones are very soft and weak structures. They are at least one order of magnitude softer and weaker as for example fibroblasts or cells forming the blood vessel walls. As neurons are usually located in soft environments this does not impede their normal outgrowth. It could even serve as a safety mechanism that prevents cell from growing into wrong areas like breaching the blood-brain-barrier, on a physical level. For a neuron the wall of a blood vessel feels like a brick wall for us.
3

On the role of cell surface associated, mucin-like glycoproteins in the pennate diatom Craspedostauros australis (Bacillariophyceae)

Poulsen, Nicole, Hennig, Helene, Geyer, Veikko F., Diez, Stefan, Wetherbee, Richard, Fitz-Gibbon, Sorel, Pellegrini, Matteo, Kröger, Nils 27 February 2024 (has links)
Diatoms are single-celled microalgae with silica-based cell walls (frustules) that are abundantly present in aquatic habitats, and form the basis of the food chain in many ecosystems. Many benthic diatoms have the remarkable ability to glide on all natural or man-made underwater surfaces using a carbohydrate- and protein-based adhesive to generate traction. Previously, three glycoproteins, termed FACs (Frustule Associated Components), have been identified from the common fouling diatom Craspedostauros australis and were implicated in surface adhesion through inhibition studies with a glycan-specific antibody. The polypeptide sequences of FACs remained unknown, and it was unresolved whether the FAC glycoproteins are indeed involved in adhesion, or whether this is achieved by different components sharing the same glycan epitope with FACs. Here we have determined the polypeptide sequences of FACs using peptide mapping by LC–MS/MS. Unexpectedly, FACs share the same polypeptide backbone (termed CaFAP1), which has a domain structure of alternating Cys-rich and Pro-Thr/Ser-rich regions reminiscent of the gel-forming mucins. By developing a genetic transformation system for C. australis, we were able to directly investigate the function of CaFAP1-based glycoproteins in vivo. GFP-tagging of CaFAP1 revealed that it constitutes a coat around all parts of the frustule and is not an integral component of the adhesive. CaFAP1-GFP producing transformants exhibited the same properties as wild type cells regarding surface adhesion and motility speed. Our results demonstrate that FAC glycoproteins are not involved in adhesion and motility, but might rather act as a lubricant to prevent fouling of the diatom surface.

Page generated in 0.0351 seconds