Spelling suggestions: "subject:"zinc oxide."" "subject:"zinc óxide.""
241 |
The effect of Co (cobalt) and In (indium) combinational doping on the structural and optical properties of ZnO nanoparticlesMaswanganye, Mpho William. January 2017 (has links)
Thesis (M.Sc. (Physics)) -- University of Limpopo, 2017 / The undoped ZnO nanoparticles, In or Co single doped ZnO nanoparticles and the In
and Co combinational doped ZnO nanoparticles were synthesised through sol-gel
technique. The samples were characterised using XRD, TEM, FTIR, Raman
spectroscopy, UV-Vis, PL and also tested for the gas sensing applications. XRD
patterns revealed that the synthesised samples were of ZnO hexagonal wurtzite
structure. The lattice parameters and the bond length of all the undoped and doped ZnO
samples were determined and found to be similar to that of the Bulk ZnO. The average
particle size of the undoped and doped ZnO nanoparticles were calculated and found
to reduce with an introduction of dopants while increasing with an increase in
temperature. The strain of all the prepared samples were also determined and observed
to be in an inverse relation to the particle size. TEM images showed that the synthesised
samples were spherically shaped and that was in agreement with XRD results, while
the EDS results showed that In and Co were successfully doped into the ZnO
nanoparticles. Raman and FTIR spectroscopy indicated that the prepared samples were
indeed ZnO nanoparticles which confirmed the XRD results. The UV-Vis results showed
a red-shift in the energy band gap with an introduction of dopants and that was related
to the reduction of the particle size, this results were consistent with the PL results. Gas
sensing results showed that doping Co and In into the ZnO nanoparticles has an effect
into ZnO properties. Combinational-doping of In and Co was found to increase the
response to the gases CH4, CO, NH3 and H2 as compared to the undoped and singly
doped ZnO nanoparticle sensors. The response\recovery time was found to be affected
with introduction of In and Co. Improvements were also observed in the operating
temperature and the selectivity of the single doped and co-doped ZnO nanoparticles
towards different gases used in this study. / University of Limpopo
IBSA
National Research Foundation (NRF)
|
242 |
Design of an environmentally friendly reactor for naphtha oxidative desulfurization by air employing a new synthetic nano-catalyst based on experiments and modellingAhmed, G.S., Jarullah, A.T., Al-Tabbakh, B.A., Mujtaba, Iqbal 31 March 2022 (has links)
Yes / Due to the environmental legislations related to sulfur content and proceeding with the challenges to find an appropriate catalyst of such contamination producing clean fuel, a main thrust for improving of more efficient technologies on new oxidative catalyst is viewed a vital issue in fuel quality development. So, in this study, the sulfur compound (ethyl mercaptan) presents in light naphtha feedstock is removed by oxidative desulfurization (ODS) in a batch reactor using a new homemade nano-catalyst and air as oxidant under different reaction conditions (reaction temperatures, reaction time and the initial sulfur concentrations) that has not been studied in such field. The catalyst is zinc oxide supported on zeolite nanoparticles which is locally prepared by Incipient Wetness Impregnation (IWI) method. Mathematical model of the relevant reactions is also developed in this study to match the experimental results via obtaining the optimal kinetic parameters utilizing optimization techniques within gPROMS program. Such optimization is conducted using two approaches (linear and nonlinear regression) and the results showed that the nonlinear approach is more accurate than linear approach. The optimal kinetic parameters are then used to achieve a clean fuel via getting the optimal operation conditions based on the maximum conversion. Where, higher than 99% of the process conversion has obtained at temperature of 327.4 K, reaction time at163.6 min and initial concentration of 335.3 ppm.
|
243 |
Numerical Simulation of Microwave Sintering of Zinc OxideFischer, Patrick 08 May 1997 (has links)
Experiments at the University of Maryland Plasma Physics Laboratory have discovered an unusual temperature response in the form of a "thermal wave" which begins at the center and propagates towards the surface of a zinc oxide sample, when heated in a microwave cavity without the presence of oxygen. This effect is believed to be caused by the irregular temperature dependence of the dielectric properties of zinc oxide, particularly dielectric loss. Two thermocouple probes were used to measure the temperature response in a small cylindrical sample of zinc oxide packed in powder insulation, and heated in a microwave oven. In order to determine if the unusual response is caused by the dielectric properties, this work uses a finite-difference mathematical model to simulate the experiments, both for the case of zinc oxide heated in ordinary air, as well as for the case of zinc oxide heated in nitrogen. A revised version of the model is used to determine if the thermocouple probe has any effect on the temperature of the sample. The spatial and temporal temperature distribution results from the model indicate that the thermocouple probe has a negligible effect on the results and that the "thermal wave" can be attributed to the irregular temperature dependence of the dielectric loss of the material. / Master of Science
|
244 |
Material Characterization of Zinc Oxide in Bulk and Nanowire Form at Terahertz FrequenciesKernan, Forest Emerson 01 January 2012 (has links)
Many new applications are being proposed and developed for use in the terahertz (THz) frequency region. Similarly, many new materials are being characterized for possible use in this area. Nanostructured forms are of particular interest since they may yield desirable properties, but they remain especially challenging to characterize. This work focuses on the characterization of zinc oxide (ZnO) in bulk and nanowire form. A method for characterizing nanostructures at THz by use of a parallel-plate waveguide (PPWG) is presented. This method is novel in that it is simple, both in theory and practice, and does not require the use of complex measurement techniques such as differential and double modulated terahertz time-domain spectroscopy (THz-TDS). To enable easy evaluation of the quality of the result the maximum deviation in the material response measurement is presented. The dielectric properties of bulk and nanowire ZnO as determined by THz-TDS measurements are reported, and the electrical conductivity extracted from both are presented for comparison. Experimental results are compared to the well established pseudo-harmonic phonon dielectric model. Shortcomings in the pseudo-harmonic phonon model are resolved when coupled with a modified Drude model. This work will enable the determination of THz material properties from nano-scale and very-thin film materials with better reliability and practicality than what has been possible until now.
|
245 |
Large-Scale Patterned Oxide Nanostructures: Fabrication, Characterization and ApplicationsWang, Xudong 28 November 2005 (has links)
Nanotechnology is experiencing a flourishing development in a variety of fields covering all of the areas from science to engineering and to biology. As an active field in nanotechnology, the work presented in this dissertation is mostly focused on the fundamental study about the fabrication and assembly of functional oxide nanostructures. In particular, Zinc Oxide, one of the most important functional semiconducting materials, is the core objective of this research, from the controlled growth of nanoscale building blocks to understanding their properties and to how to organize these building blocks. Thermal evaporation process based on a single-zone tube furnace has been employed for synthesizing a range of 1D nanostructures. By controlling the experimental conditions, different morphologies, such as ultra-small ZnO nanobelts, mesoporous ZnO nanowires and core-shell nanowire were achieved. In order to pattern the nanostructures, a large-scale highly-ordered nanobowl structure based on the self-assembly of submicron spheres was created and utilized as patterning template. The growth and patterning techniques were thereafter integrated for aligning and patterning of ZnO nanowires. The aligning mechanisms and growth conditions were thoroughly studied so as to achieve a systematic control over the morphology, distribution and density. The related electronic and electromechanical properties of the aligned ZnO nanowires were investigated. The feasibility of some potential applications, such as photonic crystals, solar cells and sensor arrays, has also been studied. This research may set a foundation for many industrial applications from controlled synthesis to nanomanufacturing.
|
246 |
One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applicationsWeintraub, Benjamin A. 20 May 2010 (has links)
As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing
techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these
shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis
of ZnO nanowires and applications in photovoltaics.
The following thesis goals have been achieved: rationale synthesis of a single
ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique
to control ZnO nanowire array density using layer-by-layer polymers, determination of
optimal nanowire field emitter density to maximize the field enhancement factor, design
of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.
|
247 |
Fundamental study of the fabrication of zinc oxide nanowires and its dye-sensitized solar cell applicationsMcCune, Mallarie DeShea 07 May 2012 (has links)
Because of its excellent and unique physical properties, ZnO nanowires have been widely used in numerous scientific fields such as sensors, solar cells, nanogenerators, etc. Although it is believed that single crystal ZnO has a much higher electron transfer rate than TiO₂, it was found that ZnO nanowire-based dye-sensitized solar cells (DSSCs) have lower efficiencies than TiO₂ nanoparticle-based DSSCs because the density and surface area of ZnO nanowires are usually lower than that of TiO₂ nanoparticles, limiting the cell's light absorption, and because the open-root structure of ZnO nanowires results in electron back transfer that causes charge shortage of the cell. Here, experimental studies were performed that utilize strategic manipulations of the design of the ZnO nanowire based DSSCs in efforts to address and solve its key challenges. It was shown that by incorporating various blocking layers into the design of the cell, the performance of the DSSC can be improved. Specifically, by placing a hybrid blocking layer of TiO₂-P4VP polymer between the substrate and the ZnO nanowires, the conversion efficiency of the cell was 43 times higher than that of a cell without this blocking layer due to the reduction of electron back transfer. Furthermore, in efforts to improve the surface area of the ZnO nanowire array, unique three dimensional structures of ZnO nanowires were fabricated. It was found that by significantly improving the overall density and surface area of the ZnO nanowire array through distinctive hierarchal nanowire structures, the light harvesting efficiency and electron transport were enhanced allowing the DSSC to reach 5.20%, the highest reported value for 3D ZnO NW based DSSCs. Additionally, the development of a theoretical model was explored in efforts to investigate how the geometry of ZnO nanowires affects the incident photon-to-current conversion efficiency of 1D ZnO nanowire-based N719-sensitized solar cells at the maximum absorption wavelength of 543 nm.
|
248 |
Synthesis, electrical properties, and optical characterization of hybrid zinc oxide/polymer thin films and nanostructuresMatsumura, Masashi. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from PDF t.p. (viewed Feb. 3, 2010). Additional advisors: Derrick R. Dean, Sergey B. Mirov, Sergey Vyazovkin, Mary Ellen Zvanut. Includes bibliographical references (p. 122-145).
|
249 |
In vitro toxicity assessment of silver and zinc oxide nanoparticlesJohnson, Clint Edwin January 2010 (has links)
Nanotoxicology is a nascent field of study concerned with the potential for nanotechnology to adversely impact human health or result in ecological damage. Nanomaterials can display unique physicochemical properties not present in the parent bulk material and it is these properties that may be a potential source of toxicity. There are a growing number of examples of nanomaterials functioning differently in biosystems compared to the parent bulk material. With the rapid growth of nanotechnology and increasing exposure of people to novel nanomaterials there is an urgent need to evaluate the toxicity of nanomaterials. In this study the toxicities of silver and zinc oxide nanoparticles were assessed. The effects of size and surface coating on the cytotoxicity and immunogenicity of silver nanoparticles were investigated, with cytotoxicity found to be inversely proportional to nanoparticle size. The subcutaneous penetration of zinc oxide nanoparticles was assessed to determine whether this material can be safely used as a UV filter in sunscreens and cosmetics. No dermal penetration was detected using a porcine in vitro model. Zinc oxide nanoparticles were also used as a model material to investigate nano-specific toxicity by comparing cytotoxicity and changes to gene expression with bulk scale zinc oxide. In both cases cytotoxicity and changes to gene expression were greater for zinc oxide nanoparticles. Methods and techniques to test the toxicity of nanomaterials in vitro and the implication for in vivo toxicity are only beginning to be elucidated. The methods and techniques used in this study, particularly nanomaterial stabilization in biofluids and toxicity testing using blood cell cultures, may assist the establishment of standard in vitro testing protocols for nanomaterials.
|
250 |
Material properties of ZnO thin films prepared by spray pyrolysisvan Heerden, Johannes Lodewikus 16 August 2012 (has links)
Ph.D. / In the search to improve the conversion efficiency of solar cells such as α-Si and CuInSe2 cells, attention have recently been focused on the use of transparent conducting oxides (TCO's) as window layers and top electrodes in these cells. Materials such as indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) thin films were used due to their excellent electro-optical properties, but it was found that they were unstable when subjected to a hydrogen plasma (during the a-Si deposition) and that the materials reduced to their metallic forms, degrading their electrical and optical properties. Zinc oxide (ZnO), however, possess electrical and optical properties equal to ITO and FTO, but is stable in the presence of a hydrogen plasma. In this study a system for the deposition of ZnO thin films by spray pyrolysis was developed and the films successfully deposited. The films were also doped with A1C1 3 in an attempt to further improve the films' conductivities. The films were then characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical measurements (Hall and four-point probe measurements) and optical analyses of the films. The films were compared with films deposited by atomic layer epitaxy (ALE) and DC sputtering. It was found that the films were crystalline with a predominantly (002) preferred orientation. The addition of Al as dopant, however, resulted in the film structure deteriorating. The SEM micrographs obtained of the films indicated films with a close-packed structure, existing of small grains and the film surface having a textured appearance. It was further found that the deposition parameters of the films influenced both the structures of the films and the morphologies and the micrographs indicated that the addition of Al as dopant resulted in the film formation being inhibited and even resulting in no proper film being deposited. It was found that the as-deposited ZnO films were resistive and that the films had to be subjected to a post-deposition annealing to decrease the film resistivity. The annealing conditions were investigated and it was found that annealing the films in hydrogen at their deposition temperature for an hour resulted in the largest decrease in the films' resistivities, typically two orders of magnitude. Studies of the substrate temperature indicated that the films had to be deposited at between 350 and 420°C and that a reduction in the substrate temperature resulted in the film resistivity increasing. Contrary to literature, it was found that the addition of Al as dopant had no beneficial influence on the electrical properties of the films and that dopant concentrations exceeding 1.0 at.% resulted in the film resistivity increasing. The films were characterized optically by analysing the transmission spectra obtained of the films, using the envelope technique. It was found that the films had transmissions exceeding 95% and that the refractive indices and optical gaps centred around 1.99 and 3.3 eV respectively. Both properties were affected by the deposition parameters. The ZnO films deposited by spray pyrolysis compared excellently with the films prepared by ALE and DC sputtering in all aspects. It is hence clear that ZnO films, with characteristics suitable for solar cell application, can be deposited by the simple and inexpensive technique of spray pyrolysis.
|
Page generated in 0.0675 seconds