• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 345
  • 116
  • 52
  • 23
  • 15
  • 13
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 678
  • 678
  • 128
  • 115
  • 113
  • 103
  • 98
  • 94
  • 63
  • 63
  • 59
  • 57
  • 56
  • 53
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Property Modulation Of Zinc Oxide Through Doping

Kekuda, Dhananjaya 03 1900 (has links)
Semi conductors are of technological importance and attracted many of the re-searchers. ZnO belongs to the family of II-VI semiconductors and has material properties well suitable to UV light emitters, varistors, Schottky diodes, gas sensors, spintronics, ferroelectric devices and thin film transistors. It has been considered as a competitor to GaN, which belongs to the family of III-V semiconductors. This is due to the fact that ZnO of high quality can be deposited at lower growth temperatures than GaN, leading to the possibility of transparent junctions on less expensive substrates such as glass. This will lead to low-cost UV lasers with important applications in high-density data storage systems etc. One of the most popular growth techniques of ZnO is physical sputtering. As compared to sol-gel and chemical-vapor deposition, the magnetron sputtering is a preferred method because of its simplicity and low operating temperatures. Hence, detailed investigations were carried out on undoped and doped ZnO thin films primarily deposited by magnetron sputtering. The obtained results in the present work are presented in the form of a thesis. Chapter 1: A brief discussion on the crystal structure of ZnO material and its possible applications in the different areas such as Schottky diodes, spintronics, ferroelectric devices and thin film transistors are presented. Chapter 2: This chapter deals with various deposition techniques used in the present study. It includes the magnetron sputtering, thermal oxidation, pulsed-laser ablation and sol-gel technique. The experimental set up details and the deposition procedures are described in detail i.e., the deposition principle and the parameters that will affect the film properties. A brief note on the structural characterization equipments namely, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and the optical characterization equipments namely, transmission spectroscopy is presented. The transport properties of the films were studied which include Dielectric studies, impedance studies, device characterization and are discussed. Chapter 3: The optimization of ZnO thin films for Schottky diode formation and The characterization of various Schottky diodes is presented in this chapter. P-type conductivity in ZnO was implemented by the variation of partial pressure of oxygen during the sputtering and are discussed. A method to achieve low series resistance hetero-junction was achieved using thermal oxidation method and the detailed transport properties were studied. The optical investigation carried out on the ZnO thin films under various growth conditions are also presented. Chapter 4: This chapter deals with the processing, structural, electrical, optical and magnetic properties of Mn doped ZnO thin films grown by pulsed laser ablation. Structural investigations have shown that the Mn incorporation increases the c-axis length due to the relatively larger ionic size of the Mn ions. Studies conducted both at low and high concentration region of Zn1¡xMnxO thin films showed that the films are anti-ferromagnetic in nature. The transport measurements revealed that the electrical conductivity is dominated by the presence of shallow traps. Optical investigations suggested the absence of midgap absorption and confirm the uniform distribution of Mn in wurtzite structure. Chapter 5: Carrier induced ferromagnetism in Co doped ZnO thin films were studied and the results are presented in this chapter. High density targets were prepared by solid state reaction process and the thin films were deposited by pulsed laser ablation technique. Two compositions were studied and it was found that with increase in substrate temperature, c-axis length decreases. Optical studies suggested a strong mid gap absorption around 2eV and could be attributed to the d-d transitions of tetrahedral coordinated Co2+. The presence of ferromagnetism in these films makes them potential candidates for spintronics applications. Chapter 6: It has been reported in literature that o®-centered polarization will drive ferroelectric phase transition. Motivated by such results, substitution of Lithium in ZnO was studied in detail. The structural and electrical properties were investigated over a wide range of composition (0-25%). The ferroelectric studies were carried out both in metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) configuration and are presented in this chapter. The appearance of Ferro electricity in these films makes them potential candidates for ferroelectric memory devices. Chapter 7: This chapter describes the studies conducted on Mg doped ZnO Thin films grown by multi-magnetron sputtering. The hexagonal phases of the films were evaluated. All the films exhibited c-axis preferred orientation towards (002) orientation. Micro structural evolutions of the films were carried out through scanning electron microscopy and atomic force microscopy. Ferroelectric properties were investigated in both metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) configurations. It was observed that the Mg concentration increases the band gap and the details on optical investigations are also presented in this chapter. Chapter 8: ZnO based thin film transistors have been fabricated and characterized using ZnO as active channel layer and Mg doped ZnO as dielectric layer. Excellent leakage properties of the gate dielectric were studied and presented in this chapter. These studies demonstrated that Mg doped ZnO thin films are suitable candidates for gate dielectric applications. Conclusions: This section presents the conclusions derived out of the present work. It also includes a few suggestions on future work on this material.
312

Organic-Inorganic Hetero Junction White Light Emitting Diode : N-type ZnO and P-type conjugated polymer

Lubuna Beegum, Shafeek January 2008 (has links)
<p>The purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material is n- type ZnO and organic material is p-type conjugated polymer. The first task was to synthesise vertically aligned ZnO nano-rods on glass as well as on plastic substrates using aqueous chemical growth method at a low temperature. The second task was to find out the proper p- type organic material that gives cheap and high efficient WLED operation. The proposed polymer shouldn’t create a high barrier potential across the interface and also it should block electrons entering into the polymer. To optimize the efficiency of WLED; charge injection, charge transport and charge recombination must be considered. The hetero junction organic-inorganic structures have to be engineered very carefully in order to obtain the desired light emission. The layered structure is composed of p-polymer/n-ZnO and the recombination has been desired to occur at the ZnO layer in order to obtain white light emission. Electrical characterization of the devices was carried out to test the rectifying properties of the hetero junction diodes.</p><p>iv</p>
313

Growth of Zinc Oxide Nanoparticles on Top of Polymers and Organic Small Molecules as a Transparent Cathode in Tandem Photovoltaic Device

Al Kadi Jazairli, Mohamad January 2008 (has links)
<p>Organic solar cells have caught considerable attention in the past few years due to their potential for providing environmentally safe, flexible, lightweight, inexpensive, and roll-to-roll feasible production solar cells. However, the efficiency achieved in current organic solar cells is quite low, yet quick and successive improvements render it as a promising alternative. A hopeful approach to improve the efficiency is by exploiting the tandem concept which consists of stacking two or more organic solar cells in series.</p><p>One important constituent in tandem solar cells is the middle electrode layer which is transparent and functions as a cathode for the first cell and an anode for the second cell. Most studies done so far have employed noble metals such as gold or silver as the middle electrode layer; however, they suffered from several shortcomings especially with respect to reproducibility.</p><p>This thesis focuses on studying a new trend which employs an oxide material based on nano-particles as a transparent cathode (such as Zinc-oxide-nano-particles) along with a transparent anode so as to replace the middle electrode.</p><p>Thus, this work presents a study on solution processable zinc oxide (ZnO) nanostructures, their proper handling techniques, and their potential as a middle electrode material in Tandem solar cells in many different configurations involving both polymer and small molecule materials. Moreover, the ZnO-np potential as a candidate for acceptor material is also investigated.</p>
314

Surface studies of model catalysts using metal atoms and particles on ZnO(0001)-Zn and -O and TiO₂(110) /

Grant, Ann W. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 173-183).
315

Epitaxial growth and characterization of cobalt-doped zinc oxide and cobalt-doped titanium dioxide for spintronic applications /

Tuan, Allan C. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 140-151).
316

Effect of heat treatments and reduced absorber layer thickness on cu(in,ga)se2 thin film solar cells

Chandrasekaran, Vinodh 01 June 2005 (has links)
Thin film solar cells with Copper Indium Gallium Diselenide (Cu(In,Ga)Se2) absorber layers is one of the most promising candidates to emerge as an efficient solar cell technology in the near future. CIGS cells with efficiencies of 19.2 % have already been reported [1]. In this study, CIGS absorber layers are fabricated by a two-stage all-solid-state manufacture-friendly process. In the first stage, designated as precursor deposition, Copper and Gallium are sequentially deposited followed by co-deposition of Indium and Selenium. In the second stage, designated as selenization, the substrate is annealed at high temperatures in a selenium environment during which a thin layer of copper is also deposited. The typical thickness of the absorber layers fabricated by this process is around 2um. The ZnO transparent front contact of these cells is a bi-layer with a thin intrinsic layer and a thicker Al doped n-type layer. These layers have been fabricated by different methods using Al-doped and undoped ZnO targets. The effect of the intrinsic layer thickness on the device performance was studied. Best performances were obtained when the intrinsic layer was around 350° thick and fabricated from an Al-doped ZnO target with excess oxygen partial pressure during deposition. The main focus of this work is to reduce the thickness of the CIGS absorber layers with no or minor loss in efficiency as this would translate directly into reduction in production costs and the amount of material being used. Reducing the thickness can be done either by reducing the deposition rates or duration of deposition. Due to the complex time-temperature profile during fabrication, reducing the thickness by reducing the deposition time would also affect the duration for which the substrates will be at high temperatures. To understand what effect this would have in film formation and performance of the device, and if any post-deposition annealing would be required to compensate for the reduced time at temperatures, experiments were carried out with the cells being annealed at different stages before and after completion of the device itself. Annealing was done at 250°C in both air and vacuum. Although annealing the finished devices always yielded poorer performance, it was certainly helpful in understanding which aspects of the device were affected. Devices with reduced absorber layer thicknesses of 1.5um, 1.0um and 0.65um were fabricated. The devices showed improved Voc's when the absorber layer thickness was reduced to 1.5um and 1.0um but the Jsc's dropped by 2-3 mA/cm2. The 1.0um thick devices also showed an increase in band gap. The thickness of the Molybdenum back contact layer was increased to see if the amount of Sodium from the substrate had any effect on the device performance. The Ga/In ratio was altered and its effect was also studied. The 0.65um thick devices showed a large reduction in Voc's and Jsc's. The effect of Selenization time and Selenium flux during Selenization were studied at each of the different thicknesses.
317

Interface Modifications with Atomic Monolayer

Lahiri, Jayeeta 24 August 2010 (has links)
No description available.
318

Growth And Characterization Of Functional Nanoparticulate Films By A Microwave Plasma-Assisted Spray Deposition Process

Wangensteen, Ted 01 January 2012 (has links)
Nanoparticle and nanoparticulate films have been grown by a unique approach combining a microwave and nebulized droplets where the concentration and thus the resulting particle size can be controlled. The goal of such a scalable approach was to achieve it with the least number of steps, and without using expensive high purity chemicals or the precautions necessary to work with such chemicals. This approach was developed as a result of first using a laser unsuccessfully to achieve the desired films and particles. Some problems with the laser approach for growing desired films were solved by substituting the higher energy microwave for the laser. Additionally, several materials were first attempted to be grown with the laser and the microwave, and what was learned as result of failures was implemented to successfully demonstrate the technique. The microwave system was characterized by using direct temperature measurements and models. Where possible, the temperature of deposition was determined using thermocouples. In the region of the waveguide, the elemental spectral lines were measured, and the temperature was calculated from measured spectral peaks. From the determined temperature, a diffusion calculation modeled the rate of heat transfer to the nebulized droplets. The result of the diffusion calculations explained the reason for the failure of the laser technique, and success for the microwave technique for simple chemistries. The microwave assisted spray pyrolysis (MPAS) technique was used to grow ZnO nanoparticles of varying size. The properties of the different size particles was measured by optical spectroscopy and magnetic measurements and was correlated to the defects created. The MPAS technique was used to grow films of Ca3Co4O9 containing varying sizes of nanoparticulates. The resistivity, Seebeck coefficient, and the power factor (PF) measured in the temperature range of 300-700 K for films grown by MPAS process with varying concentrations of calcium and cobalt chlorides are presented. Films with larger nanoparticles showed a trend toward higher PFs than those with smaller nanoparticles. Films with PFs as high as 220 μW/mK 2 were observed in films containing larger nanoparticles.
319

Synthesis, characterization and integration of piezoelectric zinc oxide nanowires

Aguilar, Carlos Andres 25 September 2012 (has links)
An automatic implantable cardiac defibrillator (AICD) is a device that is implanted in the chest to constantly monitor and, if necessary, correct episodes of arrhythmia. While the longevity of the average AICD patient has increased to 10 years after implantation, only 5% of implants functioned for seven years, and this mismatch poses a significant and ever growing clinical and economic burden. Moreover, there are now efforts to “piggyback” devices on AICDs and BVPs for additional functionality, all of which require more power. An innovative approach towards generating power for AICDs is to harness the energy of the heart by embedding energy generators in AICD leads. The cardiovascular system as a source generator is appealing due to its ability to continuously deliver mechanical energy as long as the patient is alive. Herein a device incorporating nanostructured piezoelectrics was developed as a means to harvest the energy of heart. The generator system integrates inorganic piezoelectric nanomaterials, including aligned arrays of nanowires of crystalline zinc oxide (ZnO), with elastomeric substrates. The design combines several innovative structural configurations including a “wavy” flexible electrode and a layout where the nanowires are near or on the neutral mechanical plane. A wet synthetic strategy to reliably prepare piezoelectric ZnO nanostructures directly onto the devices was also developed and optimized to produce nanowires with high densities, large aspect ratios and high orientation. The elastomeric support permits direct integration within AICD leads and is small and flexible enough to not add resistance in systole. The flexible devices were integrated into a testbed mimicking the input a failing right ventricle and the results demonstrate progress towards energy harvesting from the cardiovascular system. A model was developed to gain insight as to how to structure the nanowire array within the latitude of the synthesis to boost the energy production. To further improve the output, the nanowires were passivated with dipolar molecules to change their resistivities and the barrier height of the Schottky contact. A novel low photon energy photoelectron spectroscopy tool was developed to measure the effects of the molecules on the individual nanowire properties. This concept of using nanostructured piezoelectrics as a means to convert the energy of the body may in the coming years represent a paradigm shift from battery dependant AICD modules to completely autonomous functional systems. / text
320

Wide band-gap nanostructure based devices

Chen, Xinyi, 陈辛夷 January 2012 (has links)
Wide band gap based nanostructures have being attracting much research interest because of their promise for application in optoelectronic devices. Among those wide band gap semiconductors, gallium nitride (GaN) and zinc oxide (ZnO) are the most commonly studied and optoelectronic devices based on GaN and ZnO have been widely investigated. This thesis concentrates on the growth, optical and electrical properties of GaN and ZnO nanostructures, plus their application in solar cells and light emitting diodes (LEDs). GaN-nanowire based dye sensitized solar cells were studied. Different post-growth treatments such as annealing and coating with a TiOx shell were applied to enhance dye absorption. It was found that TiOx increased the dye absorption and the performance of the dye sensitized solar cell. ZnO nanorods were synthesized by vapor deposition and electrodeposition. Post-growth treatments such as annealing and hydrothermal processing were used to modify the defect chemistry and optical properties. LEDs based on GaN/ZnO heterojunctions were studied. The influence of ZnO seed layers on GaN/ZnO LEDs was investigated. GaN/ZnO LEDs based on ZnO nanorods with MgO and TiOx shells were also prepared in order to modify the LED performance. The coating condition of the shell was found to influence the current-voltage (I-V) characteristics and device performance. Moreover, high brightness LEDs based on GaN with InGaN multiple quantum wells were also fabricated. The origin of the emission from GaN/ZnO LEDs was studied using different kinds of GaN substrates. Direct metal contacts on bare GaN substrates were also employed to investigate the optical emission and electrical properties. It is found that the emission from the GaN/ZnO LEDs probably originated from the GaN substrate. GaN/ZnO LEDs with MgO as an interlayer were also fabricated. The MgO layer was expected to modify the band alignment between the GaN and the ZnO. It was shown that GaN/MgO/ZnO heterojunctions (using both ZnO nanorods and ZnO films) have quite different emission performance under forward bias compared to those that have no MgO interlayer. An emission peak was around 400 nm could originate from ZnO. Nitrogen doped ZnO nanorods on n-type GaN have been prepared by electrodeposition. Zinc nitrate and zinc acetate were used as ZnO precursors and NH4NO3 was used as a nitrogen precursor. Only the ZnO nanorods made using zinc nitrate showed obvious evidence of doping and coherent I-V characteristics. Cerium doped ZnO based LEDs were fabricated and showed an emission that depended on the cerium precursor that was employed. This indicates that the choice of precursor influences the growth, the materials properties and the optical properties of ZnO. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy

Page generated in 0.0581 seconds