• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CO2 Transport and Acid-Base Status during Fluctuations in Metabolic Status in Reptiles

Conner, Justin Lawrence 12 1900 (has links)
Reptiles can often experience perturbations that greatly influence their metabolic status (e.g., temperature, exercise, digestion, and ontogeny). The most common cause of fluctuations in metabolic status in post-embryonic reptiles is arguably digestion and physical activity (which will be further referred to as exercise). The objective of this thesis is to determine the mechanisms involved in CO2 transport during digestion, determine the mechanisms that allow for the maintenance of acid-base homeostasis during digestion, and observing the effect of an understudied form of exercise in semi-aquatic reptiles on the regulation of metabolic acidosis and base deficit. This dissertation provided evidence for potentially novel and under investigated mechanisms for acid-base homeostasis (e.g., small intestine and tissue buffering capacity; Chapters 3 & 4), while also debunking a proposed hypothesis for the function of an anatomical feature that still remains a mystery to comparative physiologist (Chapter 2). This thesis is far from systematic and exhaustive in its approach, however, the work accomplished in this dissertation has become the foundation for multiple distinct paths for ecologically relevant investigations of the regulation of metabolic acidosis/alkalosis in reptiles.
2

Acid-base regulation and ammonia excretion in the American horseshoe crab, Limulus polyphemus

Hans, Stephanie 15 September 2016 (has links)
Acid-base regulation is vital for animals and while the inorganic carbon system largely determines body fluid pH, another potentially valuable acid-base pair is ammonia (NH4+/NH3). This study focuses on the American horseshoe crab (Limulus polyphemus), a phylogenetically ancient marine chelicerate with no published studies on its acid-base physiology. Physiological and molecular analyses indicate that Na+/K+-ATPase, Rhesus-protein (Rh), and carbonic anhydrase (CA) are involved in acid-base homeostasis and/or ammonia regulation. This likely occurs in the book gills, which consist of ultrastructurally distinct regions. The ventral half-lamella is ion-leaky and displayed high Rh-protein, cytoplasmic CA, and hyperpolarization-activated cyclic nucleotide-gated K+ channel mRNA expression levels, suggesting a specialization in facilitated CO2 and/or ammonia diffusion compared to the dorsal half-lamella. During hypercapnia acclimation, hemolymph acid-base status exhibited a compensated respiratory acidosis accompanied with signs of metabolic depression. Ammonia influx associated with high environmental ammonia acclimation was successfully counteracted, but induced modifications in acid-base homeostasis. / October 2016
3

Linking acid-base balance with nitrogen regulation in the decapod crustacean, Carcinus maenas

Fehsenfeld, Sandra January 2016 (has links)
As one of the most successful invasive species in the marine environment around the globe, the green crab Carcinus maenas possesses efficient regulatory mechanisms to quickly acclimate to environmental changes. The most important organs in this process are the nine pairs of gills that not only allow for osmoregulation, but have been shown to be involved in ammonia excretion and respiratory gas exchange. To date, however, little is known about the gills’ contribution to acid-base regulation that might become increasingly important in a “future ocean scenario” whereby surface ocean pH is predicted to drop by up to 0.5 units by the year 2100. The present thesis aims to characterize the green crab gills’ role in acid-base regulation and how it is linked to ammonia excretion. After exposure to hypercapnia (0.4 kPa pCO2 for 7 days), osmoregulating green crabs were capable of fully compensating for the resulting extracellular respiratory acidosis, while osmoconforming green crabs only partially buffered the accompanying drop in hemolymph pH after acclimation to 1% CO2 for 48 hours. Perfusion experiments on isolated green crab gills showed that different gills contributed to the excretion of H+ in an individual pattern and indicated that NH4+ is an important component of branchial acid excretion. Experiments on gill mRNA expression and pharmaceutical effects on isolated gills identified distinct epithelial transporters to play significant roles in branchial acid base regulation: Rhesus-like protein, basolateral bicarbonate transporter(s), cytoplasmic V-(H+)-ATPase, Na+/H+-exchanger, basolateral Na+/K+-ATPase, cytoplasmic and membrane bound carbonic anhydrase, and basolateral K+ channels. Regarding the latter, the present work provides the first sequence-based evidence for a potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel (CmHCN) capable of promoting NH4+ transport in the green crabs’ gill epithelium, and further demonstrates its direct involvement in branchial acid-base regulation. This highly conserved protein is a potentially important novel key-player in acid-base regulation in all animals. Interestingly, the observed principles linking acid-base to ammonia regulation in the decapod crustacean gill epithelium resemble many observations previously made in vertebrates. The data of the present thesis therefore provides valuable information for general acid-base regulation, while contributing substantially to our understanding of acid-base regulation in invertebrates. / February 2016
4

Acid-Base Regulation in the Bullfrog (Rana catesbiana) Following Acid Infusions and Enforced Submergence

Lindinger, Michael 12 1900 (has links)
This study examined the acid-base and ionoregulatory responses by the skin and kidney of adult bullfrogs (Rana catesbiana) during recovery from non-respiratory acidoses. Acidosis was induced by intravascular infusions of HCl (3,000 uequiv/kg), or NH4Cl (4,000 uequiv/kg), or by 45 min enforced submergence. Infused acids were immediately buffered by the extracellular fluids (ECF) and moved rapidly into the intracellular compartment. Clearance of the acid load was slow (> 24 h post-infusion) and only in NH4Cl loaded frogs was the full amount cleared within 5 days. Excess acid was excreted primarily by increased renal NH4+ effluxes. The skin contributed very little to the net acid excretion; instead large "base" losses ("acid" uptake) occurred. Acid infusions also resulted in large ion losses and elevated water uptake across the skin, with electrolytes and water moving down chemical gradients. Frogs infused with HCl died within 96 h; NH4Cl loaded frogs all survived.Forced submergence resulted in a severe lactacidosis which was corrected in 12 h by a combination of renal/cutaneous acid excretion (9:1 ratio) and metabolic utilization of lactate and H+ (~ 95% of excess acid load). Acid excretion occurred primarily as NH4+ efflux by the kidney and skin. A 1:1 exchange of Na+ influx/NH4+, efflux across the skin was found (r = 0.94; P < 0.01) when Jin Na+ was elevated over basal levels (30-40 uequiv/kg·h). Lactate and net acid effluxes by the skin and kidney diminished by 24 h post-disturbance and accounted for 4 to 6% of the total estimated load to the animal. All frogs survived the diving protocol. Restoration of acid-base state in acidotic bullfrogs by ECF and non-ECF mechanisms, as well as the renal and cutaneous responses to the acidosis, is discussed and compared to that of other vertebrates. It is concluded that anurans, and the bullfrog in particular, are poor regulators of acid-base state but instead are very tolerant to marked disturbances of acid-base balance. / Thesis / Master of Science (MS)
5

The Effect of Menopause on Acid-Base Regulation and the Chemoreflex Control of Breathing during Wakefulness

Preston, Megan E. 28 September 2007 (has links)
Acid-base regulation, as reflected by hydrogen ion concentration ([H+]), and the chemoreflex control of breathing were examined in healthy pre- (PRE; n=20) and postmenopausal (POST; n=15) women of a comparable age (45 ± 2.7 vs. 52 ± 1.8 years). [H+] behaviour was examined in both groups at rest and during exercise above the ventilatory threshold using Stewart’s physicochemical approach to acid-base analysis. Ventilatory chemoreflex characteristics were assessed using Duffin’s modified rebreathing protocol that includes 5 min of prior hyperventilation and maintenance of either hyperoxic (150 mmHg) or hypoxic (50 mmHg) iso-oxia. As expected, the ovarian hormones progesterone ([P4]) and estrogen ([E2]) were significantly lower in the POST group. [H+] was unaffected by menopausal status at rest or during exercise. At rest the POST group exhibited significantly higher PaCO2 and [SID] values relative to the PRE group. In general, the acidifying effects of increased PaCO2 were offset by the alkalizing effect of increases in [SID] (or vice versa) in the POST group such that [H+] did not differ between PRE and POST groups. The central ventilatory chemoreflex also differed between groups with the POST group exhibiting a significantly higher threshold and a lower sensitivity in the response to CO2 relative to the PRE group. [P4] was found to partially account for the significant group differences in acid-base and central ventilatory chemoreflex control characteristics supporting the role of [P4] as an important determinant of acid-base status and the chemical control of ventilation in healthy women. Findings of the current study may have potential relevance in understanding the increased occurrence of various health conditions such as osteoporosis and sleep disordered breathing in females following the onset of menopause. / Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2007-09-21 08:53:00.841
6

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia 08 February 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
7

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia 08 February 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
8

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia 08 February 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
9

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia January 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
10

Acid-base regulation, calcification and tolerance to ocean acidification in echinoderms / Régulation acide-base, calcification et tolérance à l'acidification des océans chez les échinodermes

Collard, Marie 30 June 2014 (has links)
The current increase in the atmospheric CO2 concentration results in two major consequences in the marine environment: an increase of the sea surface temperature (0.7 °C since pre-industrial times) and a decreased seawater pH. This decrease is being measured continuously in different parts of the world and ranges from -0.0017 to -0.04 units per year according to the location considered. Based on CO2 emissions models provided by the IPCC, it was predicted that the average open ocean pH would decrease further by 0.4 units by 2100 and 0.8 by 2300 (corresponding to about a three-fold and six-fold increase of the proton concentration). Also, saturation states of seawater for the different forms of calcium carbonate, such as calcite, magnesium calcite and aragonite which are produced by calcifying marine organisms, are decreasing and consequently the saturation horizons of these minerals are shoaling. Today, some environments are characterized by pH values lower than the average open ocean pH. These are intertidal rock pools, upwelling zones, the deep-sea and CO2 vents. In these environments, pH is either constantly low or fluctuates. Those changes are either due to biological activity, geological CO2 leakage, or water masses movements. Within these environments, it has been hypothesized that organisms could be adapted or acclimatized to low pH values such as those predicted for the near-future. <p><p>Tolerance to ocean acidification in metazoans is linked to their acid-base regulation capacities when facing environmental hypercapnia (i.e. increased CO2 concentration in the surrounding environment). The latter may result in a hypercapnia of the internal fluids and a concomitant acidosis (i.e. reduced pH of the internal fluids due to the dissociation of CO2 in this case). Organisms have two buffer systems allowing the compensation of this acidosis: the CO2-bicarbonate and the non-bicarbonate buffers. Homeostasis of the internal fluids thanks to these systems is essential for the proper functioning of enzymes and processes. As hypometabolic calcifying osmoconformers, three of the characteristics conferring a relative vulnerability to ocean acidification, echinoderms are considered “at risk” for the near-future conditions. Nonetheless, post-metamorphic (juveniles and adults) echinoderms inhabit all environments showing naturally low pH. Furthermore, sea urchins which are highly calcified (compared to sea stars or sea cucumbers) are also found in these environments. This suggests that echinoderms have strategies to adapt or acclimate to low pH environments. Recent studies indicated that while sea urchins are able to regulate their coelomic (extracellular) fluid by accumulation of bicarbonate, sea stars seem to tolerate the acidosis linked to environmental hypercapnia. However, this information was obtained on a reduced number of species and significant interspecific differences were evidenced. Some taxa have not been investigated at all. Furthermore, several aspects of the acid-base physiology were unexplored, like the buffering capacity of the extracellular fluid and the origin of carbon within these fluids.<p><p>Accordingly, the goal of this study was to characterize the acid-base physiology in post-metamorphic echinoderms of different taxa in order to understand their response to ocean acidification.<p><p>The acid-base regulation capacities within the different echinoderm taxa were compared. A method was designed to measure the total alkalinity in small volumes (500 µl) of the main extracellular fluid (the coelomic fluid). This study showed that regular euechinoids have an increased buffer capacity in their coelomic fluid compared to seawater and the other echinoderm groups. In sea urchins, bicarbonate and non-bicarbonate buffers come into play, the former playing the major role. This buffer capacity was increased in fed individuals compared to fasted ones and increased further when seawater pH was lowered.<p><p>The acid-base regulation capacities of sea urchins from different taxa were investigated. Regular euechinoids possess an increased buffer capacity of the coelomic fluid allowing them to maintain a higher pH compared to cidaroids at current seawater pH. This pattern was found for temperate, tropical and Antarctic sea urchins. Data was also obtained for irregular echinoids which also showed a particularly low extracellular pH and a buffer capacity close to seawater like cidaroids. When exposed to reduced seawater pH (8.0, 7.7, and 7.4) for 4-6 weeks, regular euechinoids showed an increasing buffer capacity of the coelomic fluid accompanied by a homeostasis of the pH. On the contrary, cidaroids showed no changes in their acid-base status whatever the seawater pH (8.0 to 7.4). The origin of coelomic fluid carbon, investigated by stable carbon isotope analysis, also differs according to taxa. The δ13CDIC of regular euechinoids evidenced a mixing between CO2 from metabolic origin and that from the surrounding seawater. This is further supported by the correlation between the seawater signal of reduced pH conditions (modified by the addition of industrial gas, changing the δ13C to more negative values) and that of the coelomic fluid. On the other hand, cidaroids exhibit a signal reflecting principally metabolic CO2 (very negative δ13C), and the δ13C did not change under varying pH conditions (i.e. did not adapt to the seawater δ13CDIC signature). For irregular echinoids, the carbon origin is unclear as some species show signals close to that of regular euechinoids whereas others are similar to cidaroids.<p><p>The impact of acid-base regulation was investigated by testing the effect of ocean acidification on the mechanical properties of the skeleton (test plates) in the sea urchin Paracentrotus lividus. Individuals from intertidal pools, CO2 vents and a one year acidification experiment (pH 8.0, 7.9 and 7.7) were compared. Only the intertidal pool individuals showed a difference of the Young’s modulus and fracture forces of their plates. Sea urchins from the tide pool with the largest pH fluctuations showed a lower stiffness and strengthened test. On the contrary, sea urchins from CO2 vents and experimental acidification did not display any differences in the several mechanical properties tested. We suggest that the different food qualities (calcified vs. uncalcified algae) in the different tide pools significantly contributed to the observed difference.<p><p>The acid-base regulation ability of sea cucumbers was assessed in two species from contrasted habitats (mangrove intertidal vs. coral reef species). These organisms underwent acidosis of the coelomic fluid when exposed to reduced seawater pH for a short time (6 to 12 days). The δ13C signal of the coelomic fluid mirrored that of the surrounding seawater in all conditions, indicating that the CO2 accumulated (cause of the acidosis) comes also from the seawater. This is still unexplained to date. However, metabolic processes such as respiration and ammonium excretion rates were not affected. No difference was evidenced between the two species.<p><p>The results obtained in this study compiled with data from the literature indicate that post-metamorphic echinoderms have contrasted acid-base physiology with most regular euechinoids compensating the coelomic fluid pH by accumulation of bicarbonate ions (and possibly ophiuroids also), cidaroids and at least one regular euechinoid (Arbacia lixula) having a naturally low coelomic fluid pH which is not affected by acidification, and sea stars and sea cucumbers which do not compensate their coelomic fluid pH when submitted to acidified seawater. In regular euechinoids, negative effects are linked to resource allocation with growth usually being reduced in favor of acid-base regulation mechanisms. Starfish and sea cucumbers appear as resilient to acidification, with very few functions being negatively impacted. In conclusion, it seems that post-metamorphic echinoderms studied so far will not be particularly at risk when facing ocean acidification levels expected by 2100. Furthermore, tolerance to ocean acidification does not seem linked to the present day ambient pH regime. Nevertheless, more studies need to be carried out on brittle stars and sea cucumbers to confirm preliminary results, as well as crinoids which have not been investigated to date. Long-term exposure experiments to estimate energy budget changes as well as more assessments of evolutionary potential in echinoderms are crucially needed./L’augmentation actuelle de la concentration en CO2 atmosphérique a deux conséquences majeures dans l’environnement marin :une augmentation de la température des eaux de surface (0.7°C depuis l’époque préindustrielle) et une diminution du pH de l’eau de mer. Cette diminution est mesurée continuellement dans différentes régions du monde et varie de -0.0017 à -0.04 unités de pH par an en fonction du site considéré. Basé sur des modèles d’émissions de CO2 du GIEC, il a été prédit que le pH moyen de l’océan diminuerait encore de 0.4 unités d’ici 2100 et 0.8 d’ici 2300 (correspondant à une augmentation de la concentration en protons d’environ 3 fois et 6 fois). De même, les états de saturation de l’eau de mer vis-à-vis des différentes formes de carbonate de calcium, telles que la calcite, la calcite magnésienne et l’aragonite produites par les organismes calcifiants, sont en train de diminuer et par conséquent, les horizons de saturation remontent vers les eaux de surface. Aujourd’hui, certains environnements sont caractérisés par des valeurs de pH plus basses que celle de l’océan. Ceux-ci sont les mares intertidales, les zones d’upwelling, l’océan profond et les évents volcaniques. Dans ces environnements, le pH est soit constamment bas ou fluctue. Ces changements sont soit dû à une activité biologique, une fuite de CO2 géologique, ou au mouvement des masses d’eau. Dans ces environnements, il a été suggéré que les organismes pourraient être adaptés ou acclimatés à des valeurs basses de pH, telles que celles prédites pour le futur proche.<p> <p>La tolérance à l’acidification des océans chez les métazoaires est liée à leur capacité de régulation acide-base lorsqu’ils sont exposés à une hypercapnie environnementale (c’est-à-dire, une augmentation de la concentration en CO2 dans l’environnement entourant l’organisme). Ce phénomène peut résulter en une hypercapnie des liquides internes et une acidose concomitante (c’est-à-dire, un pH des liquides internes réduit dû à la dissociation du CO2 dans ce cas précis). Les organismes ont deux systèmes tampons leur permettant de compenser l’acidose :les tampons CO2-bicarbonate et non-bicarbonate. L’homéostasie des liquides internes grâce à ces systèmes est essentielle pour le fonctionnement correct des enzymes et processus. En tant qu’osmoconformes calcifiant hypométaboliques, trois caractéristiques menant à une certaine vulnérabilité face à l’acidification des océans, les échinodermes sont considérés « à risque » pour les conditions du futur proche. Cependant, les échinodermes post-métamorphiques (juvéniles et adultes) occupent tous les environnements montrant un pH faible naturellement. De plus, les oursins qui sont hautement calcifiés (par rapport aux étoiles de mer ou aux concombres de mer) sont également retrouvés dans ces environnements. Ceci suggère que les échinodermes ont des stratégies d’adaptation ou d’acclimatation à ces environnements à bas pH. Alors que des études récentes montrent que les oursins sont capables de réguler le pH du liquide cœlomique (extracellulaire) par l’accumulation de bicarbonates, les étoiles semblent tolérer l’acidose liée à l’hypercapnie environnementale. Néanmoins, ces informations ont été obtenues sur un petit nombre d’espèces et des différences interspécifiques significatives ont été mises en évidence. Certains taxa n’ont pas été étudié du tout. Par ailleurs, différents aspects de la physiologie acide-base sont inexplorés, tels que la capacité tampon du liquide extracellulaire et l’origine du carbone dans ces liquides.<p><p>Par conséquent, le but de cette étude était de caractériser la physiologie acide-base chez les échinodermes post-métamorphiques de différents taxa afin de comprendre leur réponse à l’acidification des océans.<p><p>Les capacités de régulation acide-base au sein des différents groupes d’échinodermes ont été comparées. Une méthode a été mise au point afin de mesurer l’alcalinité totale dans de petits volumes (500 µl) de liquide extracellulaire (le liquide cœlomique). Cette étude démontra que la capacité tampon du liquide cœlomique des euéchinoïdes réguliers est accrue comparée à celle de l’eau de mer ainsi que celle des autres groupes d’échinodermes. Dans les oursins, les tampons bicarbonate et non-bicarbonate entrent en jeux, le premier étant majoritaire. Cette capacité tampon est augmentée chez les individus nourris par rapport à ceux à jeuns et est augmentée plus encore lorsque le pH de l’eau de mer est diminué.<p><p>Les capacités de régulation acide-base ont été étudiées plus spécifiquement dans les différents groupes d’oursins. Les euéchinoïdes réguliers possèdent une capacité tampon accrue du liquide cœlomique leur permettant de maintenir un pH élevé comparé aux oursins cidaroïdes, au pH de l’eau de mer actuel. Ce patron se retrouve dans les oursins tempérés, tropicaux et antarctiques. Des données ont également été obtenues pour les oursins irréguliers qui ont également un pH extracellulaire particulièrement bas et une capacité tampon proche de celle de l’eau de mer comme les cidaroïdes. Lorsqu’ils sont exposés à un pH de l’eau de mer réduit (7.7 et 7.4 par rapport à 8.0) pour 4 à 6 semaines, les euéchinoïdes réguliers ont montré une augmentation de la capacité tampon du liquide cœlomique accompagnée d’une homéostasie du pH de ce liquide. A l’inverse, les cidaroïdes n’ont montré aucune modification de leur statut acide-base quel que soit le pH (8.0 à 7.4). L’origine du carbone du liquide cœlomique, étudié par analyse des isotopes stables du carbone, diffère également en fonction du groupe. Le δ13CDIC des euéchinoïdes réguliers met en évidence un mélange entre du CO2 d’origine métabolique et celui de l’eau environnante. Ceci est également démontré par la corrélation entre le signal de l’eau de mer dont le pH est réduit (modifié par l’ajout de CO2 industriel, changent le δ13C vers des valeurs plus négatives) et celui du liquide cœlomique. En revanche, les cidaroïdes montrent un signal reflétant principalement celui du CO2 métabolique (δ13C très négatif), et le δ13C n’est pas influencé par des conditions de pH variées (c’est-à-dire, qu’il ne s’adapte pas à la signature du δ13CDIC de l’eau de mer). Pour les oursins irréguliers, l’origine du carbone est incertaine puisque certaines espèces montrent un signal proche de celui des euéchinoïdes réguliers et d’autres similaire à celui des cidaroïdes.<p><p>L’impact de la régulation acide-base a été étudié en testant l’effet de l’acidification des océans sur les propriétés mécaniques du squelette (plaques squelettiques) de l’oursin Paracentrotus lividus. Des individus de mares intertidales, d’évents volcaniques et d’une expérience d’acidification d’un an (pH 8.0, 7.9 et 7.7) ont été comparés. Seuls les individus des mares intertidales montrèrent une différence pour le module de Young et la force des fractures des plaques. Les oursins venant de la mare intertidale montrant les plus grandes variations de pH avaient une rigidité plus faible et un squelette renforcé. A l’inverse, les oursins des évents volcaniques et de l’expérience d’acidification n’ont montrés aucune différence dans les diverses propriétés mécaniques étudiées. Nous suggérons que les variations en termes de qualité de nourriture (algues calcifiées vs. non-calcifiées) dans les différentes mares intertidales ont contribués de manière significative à la différence observée.<p><p>L’habilité des concombres de mer à réguler leur balance acide-base a été évaluée dans deux espèces d’habitats contrastés (espèce intertidale des mangroves vs. subtidale des récifs coralliens). Ces organismes ont subis une acidose du liquide cœlomique lorsqu’ils ont été exposés à un pH réduit de l’eau de mer pour une courte durée (6 à 12 jours). Le signal δ13C du liquide cœlomique reflétait celui de l’eau environnante dans toutes les conditions, indiquant que le CO2 accumulé (cause de l’acidose) venait de l’eau. Ceci est encore inexpliqué à l’heure actuelle. Cependant, les processus métaboliques tels que la respiration ou l’excrétion d’ammonium n’ont pas été affecté. Aucune différence n’a été observée entre les deux espèces.<p><p>Les résultats obtenus dans cette étude compilés avec ceux de la littérature indiquent que les échinodermes post-métamorphiques ont une physiologie acide-base contrastée avec la plupart des euéchinoïdes réguliers qui compensent le pH du liquide cœlomique par l’accumulation d’ions bicarbonates (et peut-être les ophiures aussi), les cidaroïdes et au moins un euéchinoïde régulier (Arbacia lixula) qui ont naturellement un pH du liquide cœlomique bas et qui ne sont pas affectés par l’acidification, et les étoiles de mer et les concombres de mers qui ne compensent pas le pH du liquide cœlomique lorsqu’ils sont soumis à une eau acidifiée. Chez les euéchinoïdes réguliers, des effets négatifs sont liés à un changement de l’allocation des ressources avec souvent un taux de croissance réduit en faveur des mécanismes de régulation acide-base. Les étoiles de mer et les concombres de mer apparaissent plus tolérants à l’acidification, avec peu de fonctions négativement impactées. En conclusion, il semble que les échinodermes post-métamorphiques étudiés jusqu’à présent ne seront pas particulièrement à risque lorsqu’ils seront exposés au niveau d’acidification attendu pour 2100. De plus, la tolérance à l’acidification des océans ne semble pas liée au régime de pH subit actuellement. Cependant, plus d’études doivent être menées sur les ophiures et les concombres de mer afin de confirmer les résultats préliminaires, ainsi que sur les crinoïdes qui n’ont à l’heure actuelle pas encore été étudiés. Des expériences à long terme afin d’estimer le budget énergétique des organismes ainsi que plus d’évaluations du potentiel d’évolution chez les échinodermes sont absolument nécessaires.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1164 seconds